Skip to main content
Log in

Low temperature selective catalytic reduction of NOx by NH3 over Cu modified V2O5/TiO2–carbon nanotube catalyst

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A set of CuO–V2O5/TiO2–carbon nanotubes catalysts were prepared by sol–gel method and the structural characteristics of the prepared catalyst were examined by scanning electron microscope, Fourier transform infrared spectroscopy, Brunauer–Emmett–Teller surface area measurements, X-ray diffraction, X-ray photoelectron spectroscopy and temperature programmed desorption (TPD) analyses. It was observed from the results that vanadium particles were highly dispersed on the CNTs wall and the promotional effects of CuO over V2O5/TiO2–CNTs catalyst were also investigated. The positivity of the catalytic activity was attributed to the diameter of the CNTs used. Among the catalysts, V–Cu1/Ti–C10 (1 wt% Cu & 10 wt% CNTs) with CNTs having an outer diameter of 10–15 nm attained a NOx removal efficiency of 94% at 300 °C under a gas hourly space velocity of 30,000 h−1. The existence of copper species in the form of small CuO clusters and Cu2+ ions in the catalyst enhanced the redox properties of the catalyst. The presence of CNTs improved catalytic activity and provides better resistance to SO2 and H2O at the low reaction temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mochida I, Korai Y, Shirahama M et al (2000) Removal of SOx and NOx over activated carbon fibers. Carbon N Y 38:227–239. https://doi.org/10.1016/S0008-6223(99)00179-7

    Article  CAS  Google Scholar 

  2. Chmielewski AG, Sun Y, Zimek Z et al (2002) Mechanism of NOx removal by electron beam process in the presence of scavengers. Radiat Phys Chem 65:397–403. https://doi.org/10.1016/S0969-806X(02)00340-7

    Article  CAS  Google Scholar 

  3. Choi B, Lee KS (2014) LNT/CDPF catalysts for simultaneous removal of NOx and PM from diesel vehicle exhaust. Chem Eng J 240:476–486. https://doi.org/10.1016/j.cej.2013.10.100

    Article  CAS  Google Scholar 

  4. Simböck J, Khetan A, Pegios N et al (2019) Deactivation reactions on a commercial lean nox-trap—effect of hydrocarbon nature, concentration and operation temperature. Appl Catal A 585:117178. https://doi.org/10.1016/j.apcata.2019.117178

    Article  CAS  Google Scholar 

  5. Sitshebo S, Tsolakis A, Theinnoi K (2009) Promoting hydrocarbon-SCR of NOx in diesel engine exhaust by hydrogen and fuel reforming. Int J Hydrog Energy 34:7842–7850. https://doi.org/10.1016/j.ijhydene.2009.07.059

    Article  CAS  Google Scholar 

  6. Xiaoyan SHI, Yunbo YU, Hong HE et al (2008) Combination of biodiesel-ethanol-diesel fuel blend and SCR catalyst assembly to reduce emissions from a heavy-duty diesel engine. J Environ Sci 20:177–182. https://doi.org/10.1016/S1001-0742(08)60028-5

    Article  Google Scholar 

  7. Seo CK, Kim H, Choi B et al (2011) De-NOx characteristics of a combined system of LNT and SCR catalysts according to hydrothermal aging and sulfur poisoning. Catal Today 164:507–514. https://doi.org/10.1016/j.cattod.2010.10.010

    Article  CAS  Google Scholar 

  8. You R, Meng M, Zhang J et al (2019) A noble-metal-free SCR-LNT coupled catalytic system used for high-concentration NOx reduction under lean-burn condition. Catal Today 327:347–356. https://doi.org/10.1016/j.cattod.2018.03.022

    Article  CAS  Google Scholar 

  9. Praveena V, Martin MLJ (2018) A review on various after treatment techniques to reduce NOx emissions in a CI engine. J Energy Inst 91:704–720. https://doi.org/10.1016/j.joei.2017.05.010

    Article  CAS  Google Scholar 

  10. Pârvulescu VI, Grange P, Delmon B (1998) Catalytic removal of NO. Catal Today 46:233–316. https://doi.org/10.1016/S0920-5861(98)00399-X

    Article  Google Scholar 

  11. Zhao K, Han W, Tang Z et al (2016) Investigation of coating technology and catalytic performance over monolithic V2O5–WO3/TiO2 catalyst for selective catalytic reduction of NOx with NH3. Colloids Surf A Physicochem Eng Asp 503:53–60. https://doi.org/10.1016/j.colsurfa.2016.05.014

    Article  CAS  Google Scholar 

  12. Jiang B, Liu Y, Wu Z (2009) Low-temperature selective catalytic reduction of NO on MnOx/TiO2 prepared by different methods. J Hazard Mater 162:1249–1254. https://doi.org/10.1016/j.jhazmat.2008.06.013

    Article  CAS  PubMed  Google Scholar 

  13. Aguilar-Romero M, Camposeco R, Castillo S et al (2017) Acidity, surface species, and catalytic activity study on V2O5–WO3/TiO2 nanotube catalysts for selective NO reduction by NH3. Fuel 198:123–133. https://doi.org/10.1016/j.fuel.2016.11.090

    Article  CAS  Google Scholar 

  14. Dunn JP, Koppula PR, Stenger HG, Wachs IE (1998) Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts. Appl Catal B Environ 19:103–117. https://doi.org/10.1016/S0926-3373(98)00060-5

    Article  CAS  Google Scholar 

  15. Dunn JP, Stenger HG, Wachs IE (1999) Oxidation of SO2 over supported metal oxide catalysts. J Catal 181:233–243

    Article  CAS  Google Scholar 

  16. Wang Y, Wang F, Li G et al (2014) Mercury removal over the vanadia–titania catalyst in CO2-enriched conditions. Chem Eng J 263:356–363. https://doi.org/10.1016/j.cej.2014.10.091

    Article  CAS  Google Scholar 

  17. Kim J, Gyu ÆT (2008) Heterogeneous mercury reaction on a selective catalytic reduction (SCR) catalyst. Catal Lett 121:219–225. https://doi.org/10.1007/s10562-007-9317-0

    Article  CAS  Google Scholar 

  18. Jang BWL, Spivey JJ, Kung MC, Kung HH (1996) Low-temperature NOx removal for flue gas cleanup. ACS Div Fuel Chem Prep 41:308–311

    CAS  Google Scholar 

  19. Ma Z, Wu X, Feng Y et al (2015) Low-temperature SCR activity and SO2 deactivation mechanism of Ce-modified V2O5–WO3/TiO2 catalyst. Prog Nat Sci Mater Int 25:342–352. https://doi.org/10.1016/j.pnsc.2015.07.002

    Article  CAS  Google Scholar 

  20. Li L, Sun B, Sun J et al (2017) Novel MnOx–CeO2 nanosphere catalyst for low-temperature NH3-SCR. Catal Commun 100:98–102. https://doi.org/10.1016/j.catcom.2017.06.019

    Article  CAS  Google Scholar 

  21. Zhang Y, Zheng Y, Wang X, Lu X (2015) Preparation of Mn–FeOx/CNTs catalysts by redox co-precipitation and application in low-temperature NO reduction with NH3. CATCOM 62:57–61. https://doi.org/10.1016/j.catcom.2014.12.023

    Article  CAS  Google Scholar 

  22. Zhang Y, Zheng Y, Zou H, Zhang X (2015) One-step synthesis of ternary MnO2–Fe2O3–CeO2–Ce2O3/CNT catalysts for use in low-temperature NO reduction with NH3. Catal Commun 71:46–50. https://doi.org/10.1016/j.catcom.2015.08.011

    Article  CAS  Google Scholar 

  23. Huang B, Huang R, Jin D, Ye D (2007) Low temperature SCR of NO with NH3 over carbon nanotubes supported vanadium oxides. Catal Today 126:279–283. https://doi.org/10.1016/j.cattod.2007.06.002

    Article  CAS  Google Scholar 

  24. Pourkhalil M, Moghaddam AZ, Rashidi A et al (2013) Preparation of highly active manganese oxides supported on functionalized MWNTs for low temperature NOx reduction with NH3. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2013.04.076

    Article  Google Scholar 

  25. Wang X, Zheng Y, Xu Z et al (2014) Low-temperature NO reduction with NH3 over Mn–CeOx/CNT catalysts prepared by a liquid-phase method. Catal Sci Technol. https://doi.org/10.1039/c4cy00026a

    Article  PubMed  PubMed Central  Google Scholar 

  26. Shen B, Chen J, Yue S, Li G (2015) A comparative study of modified cotton biochar and activated carbon based catalysts in low temperature SCR. Fuel 156:47–53. https://doi.org/10.1016/j.fuel.2015.04.027

    Article  CAS  Google Scholar 

  27. Wen J, GuoQianqian HY, Guoqiang Ma, Han Xiaojin HZ (2014) Catalytic role of vanadium(V) sulfate on activated carbon for SO2 oxidation and NH3-SCR of NO at low temperatures. Catal Commun 56:23–26. https://doi.org/10.1016/j.catcom.2014.06.017

    Article  CAS  Google Scholar 

  28. Rodriguez NM, Kim MS, Baker RTK (1994) Carbon nanofibers: a unique catalyst support medium. J Phys Chem 98:13108–13111. https://doi.org/10.1021/j100101a003

    Article  CAS  Google Scholar 

  29. Chen C, Cao Y, Liu S et al (2018) SCR catalyst doped with copper for synergistic removal of slip ammonia and elemental mercury. Fuel Process Technol 181:268–278. https://doi.org/10.1016/j.fuproc.2018.09.025

    Article  CAS  Google Scholar 

  30. Schwaemmle T, Heidel B, Brechtel K, Scheffknecht G (2012) Study of the effect of newly developed mercury oxidation catalysts on the DeNOx-activity and SO2–SO3-conversion. Fuel 101:179–186. https://doi.org/10.1016/j.fuel.2010.11.043

    Article  CAS  Google Scholar 

  31. Li Q, Hou X, Yang H et al (2012) Promotional effect of CeOx for NO reduction over V2O5/TiO2—carbon nanotube composites. J Mol Catal A Chem 356:121–127. https://doi.org/10.1016/j.molcata.2012.01.004

    Article  CAS  Google Scholar 

  32. Li Q, Yang H, Qiu F, Zhang X (2011) Promotional effects of carbon nanotubes on V2O5/TiO2 for NOx removal. J Hazard Mater 192:915–921. https://doi.org/10.1016/j.jhazmat.2011.05.101

    Article  CAS  PubMed  Google Scholar 

  33. Misra A, Tyagi PK, Singh MK, Misra DS (2006) FTIR studies of nitrogen doped carbon nanotubes. Diam Relat Mater 15:385–388. https://doi.org/10.1016/j.diamond.2005.08.013

    Article  CAS  Google Scholar 

  34. Liu J, Shen M, Li C et al (2019) Enhanced hydrothermal stability of a manganese metavanadate catalyst based on WO3–TiO2 for the selective catalytic reduction of NOx with NH3. Reac Kinet Mech Cat 128:175–191. https://doi.org/10.1007/s11144-019-01624-7

    Article  CAS  Google Scholar 

  35. Bai S, Jiang S, Li H, Guan Y (2015) Chinese Journal of Chemical Engineering Carbon nanotubes loaded with vanadium oxide for reduction NO with NH3 at low temperature. CJCHE 23:516–519. https://doi.org/10.1016/j.cjche.2014.07.003

    Article  CAS  Google Scholar 

  36. Shi Y, Chen S, Sun H et al (2013) Low-temperature selective catalytic reduction of NOx with NH3 over hierarchically macro-mesoporous MnTiO2. Catal Commun 42:10–13. https://doi.org/10.1016/j.catcom.2013.07.036

    Article  CAS  Google Scholar 

  37. Lu X, Song C, Jia S et al (2015) Low-temperature selective catalytic reduction of NOx with NH3 over cerium and manganese oxides supported on TiO2—graphene. Chem Eng J 260:776–784. https://doi.org/10.1016/j.cej.2014.09.058

    Article  CAS  Google Scholar 

  38. Du X, Gao X, Fu Y et al (2012) The co-effect of Sb and Nb on the SCR performance of the V2O5/TiO2 catalyst. J Colloid Interface Sci 368:406–412. https://doi.org/10.1016/j.jcis.2011.11.026

    Article  CAS  PubMed  Google Scholar 

  39. Huang Z, Zhu Z, Liu Z (2002) Combined effect of H2O and SO2 on V2O5/AC catalysts for NO reduction with ammonia at lower temperatures. Appl Catal B Environ 39:361–368

    Article  CAS  Google Scholar 

  40. Zhao X, Huang L, Li H et al (2015) Highly dispersed V2O5/TiO2 modified with transition metals (Cu, Fe, Mn Co) as efficient catalysts for the selective reduction of NO with NH3. Chin J Catal 36:1886–1899. https://doi.org/10.1016/S1872-2067(15)60958-5

    Article  CAS  Google Scholar 

  41. Chen C, Jia W, Liu S, Cao Y (2018) The enhancement of CuO modified V2O5–WO3/TiO2 based SCR catalyst for Hg0 oxidation in simulated flue gas. Appl Surf Sci 436:1022–1029. https://doi.org/10.1016/j.apsusc.2017.12.123

    Article  CAS  Google Scholar 

  42. Chen H, Qi X, Liang Y, Yang X (2019) Effect of Fe reduced—modification on—TiO2 supported Fe–Mn catalyst for NO removal by—NH3 at low temperature. Reac Kinet Mech Cat 126:327–339. https://doi.org/10.1007/s11144-018-1517-7

    Article  CAS  Google Scholar 

  43. Xie C, Yang S, Wen J, Chunming S (2019) Constructing hollow silkworm structure in MnOx–TiO2 catalysts for improving the performance in selective catalytic reduction of NO by NH3. Reac Kinet Mech Cat 128:681–693. https://doi.org/10.1007/s11144-019-01669-8

    Article  CAS  Google Scholar 

  44. Kang M, Duck E, Man J, Eui J (2007) Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Appl Catal A Gen 327:261–269. https://doi.org/10.1016/j.apcata.2007.05.024

    Article  CAS  Google Scholar 

  45. Chen C, Jia W, Liu S, Cao Y (2018) Simultaneous NO removal and Hg0 oxidation over CuO doped V2O5–WO3/TiO2 catalyst in simulated coal-fired flue gas. Energy Fuels 32:7025–7034. https://doi.org/10.1021/acs.energyfuels.7b03905

    Article  CAS  Google Scholar 

  46. Li H, Zhu L, Wu S et al (2016) Synergy of CuO and CeO2 combination for mercury oxidation under low-temperature selective catalytic reduction atmosphere. Int J Coal Geol 170:69–76. https://doi.org/10.1016/j.coal.2016.07.011

    Article  CAS  Google Scholar 

  47. Li J, Tang X, Yi H et al (2017) Effects of copper-precursors on the catalytic activity of Cu/graphene catalysts for the selective catalytic oxidation of ammonia. Appl Surf Sci 412:37–44. https://doi.org/10.1016/j.apsusc.2017.03.227

    Article  CAS  Google Scholar 

  48. Fleutot B, Martinez H, Pecquenard B et al (2008) Surface film morphology (AFM) and chemical features (XPS) of cycled V2O5 thin films in lithium microbatteries. J Power Sources 180:836–844. https://doi.org/10.1016/j.jpowsour.2008.02.080

    Article  CAS  Google Scholar 

  49. Li Y, Zhong Q (2009) The characterization and activity of F-doped vanadia/titania for the selective catalytic reduction of NO with NH3 at low temperatures. J Hazard Mater 172:635–640. https://doi.org/10.1016/j.jhazmat.2009.07.039

    Article  CAS  PubMed  Google Scholar 

  50. Yu L, Zhong Q, Zhang S et al (2015) A CuO–V2O5/TiO2 catalyst for the selective catalytic reduction of NO with NH3. Combust Sci Technol 187:925–936. https://doi.org/10.1080/00102202.2014.993028

    Article  CAS  Google Scholar 

  51. Zhao X, Huang L, Li H, Hu H, Han J, Shi L, Zhang D (2015) Highly dispersed V2O5/TiO2 modified with transition metals (Cu, Fe, Mn, Co) as efficient catalysts for the selective reduction of NO with NH3. Chin J Catal 36:1886–1899. https://doi.org/10.1016/S1872-2067(15)60958-5

    Article  CAS  Google Scholar 

  52. Guan B, Lin H, Zhu L, Huang Z (2011) Selective catalytic reduction of NOx with NH3 over Mn, Ce substitution Ti0.9V0.1O2-δ nanocomposites catalysts prepared by self-propagating high-temperature synthesis method. J Phys Chem C 15:12850–12863

    Article  Google Scholar 

  53. Tian W, Yang H, Fan X, Zhang X (2011) Catalytic reduction of NOx with NH3 over different-shaped MnO2 at low temperature. J Hazard Mater 188:105–109. https://doi.org/10.1016/j.jhazmat.2011.01.078

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Raja.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raja, S., Alphin, M.S. Low temperature selective catalytic reduction of NOx by NH3 over Cu modified V2O5/TiO2–carbon nanotube catalyst. Reac Kinet Mech Cat 129, 787–804 (2020). https://doi.org/10.1007/s11144-020-01735-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01735-6

Keywords

Navigation