Skip to main content
Log in

Solubility and Thermodynamic Properties of Ammonium-Based Gemini Ionic Liquids in Pure Solvents

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Asymmetrical ammonium-based gemini ionic liquids, 1-trimethylammonium-3-(1-methylpiperidinium)propane dibis[(trifluoromethyl)sulfonyl]imide ([N111C3MPip][NTf2]2) and 1-trimethylammonium-3-(4-methylmorpholinium)propane dibis[(trifluoromethyl)sulfonyl]imide ([N111C3MMor][NTf2]2), were synthesized and structurally characterized by 1H NMR, 13C NMR, and MS. The melting temperatures and associated enthalpies and entropies of fusion of these gemini ionic liquids have been determined through differential scanning calorimetry (DSC). Thermal stabilities of [N111C3MPip][NTf2]2 and [N111C3MMor][NTf2]2 have been investigated by thermogravimetric analysis technology under pure nitrogen atmosphere. The solubility data of [N111C3MPip][NTf2]2 and [N111C3MMor][NTf2]2 in water, ethanol, benzyl alcohol, 2-phenylethanol and n-heptane were determined by a synthetic method using a laser monitoring observation technique in the temperature range 298.15–333.15 K under atmospheric pressure. The solubility in all pure solvents increased with the increasing temperature and the greatest solubilities of both gemini ionic liquids were observed in benzyl alcohol. The modified Apelblat, Buchowski–Ksiazaczak λh and NRTL models were employed to correlate the experimental solubility data. The calculated results show good agreement with the experimental data and modified Apelblat and λh equations are more accurate than the NRTL model. The standard state enthalpy, entropy, and Gibbs energy of dissolution of the GILs in the studied solvents were evaluated through the van′t Hoff equation using the experimental solubility data. The excess enthalpies of the solutions were also determined by the λh model. The dissolution behavior can serve for the synthesis and purification process of GILs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rogers, R.D., Seddon, K.R.: Ionic liquids—solvents of the future? Science 302, 792–793 (2003)

    PubMed  Google Scholar 

  2. Wasserscheid, P., Welton, T.: Ionic Liquids in Synthesis, 2nd edn. Wiley-VCH Verlag Gmb H and Co. KGa A, Weinheim (2008)

    Google Scholar 

  3. Ma, Z., Yu, J., Dai, S.: Preparation of inorganic materials using ionic liquids. Adv. Mater. 22, 261–285 (2010)

    CAS  Google Scholar 

  4. Brennecke, J.F., Maginn, E.J.: Ionic liquids: innovative fluids for chemical processing. AIChE J. 47, 2384–2389 (2001)

    CAS  Google Scholar 

  5. Anthony, J.L., Maginn, E.J., Brennecke, J.F.: Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. J. Phys. Chem. B 106, 7315–7320 (2002)

    CAS  Google Scholar 

  6. Armand, M., Endres, F., MacFarlane, D.R., Ohno, H., Scrosati, B.: Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8, 621–629 (2009)

    CAS  PubMed  Google Scholar 

  7. Rocha, M.A.A., van den Bruinhorst, A., Schröer, W., Rathke, B.: Physicochemical properties of fatty acid based ionic liquids. J. Chem. Thermodyn. 100, 156–164 (2016)

    CAS  Google Scholar 

  8. Sheldon, R.A., Laua, R.M., Sorgedrager, M.J., van Rantwijk, F., Seddon, K.R.: Biocatalysis in ionic liquids. Green Chem. 4, 147–151 (2002)

    CAS  Google Scholar 

  9. Kubisa, P.: Application of ionic liquids as solvents for polymerization processes. Prog. Polym. Sci. 29, 3–12 (2004)

    CAS  Google Scholar 

  10. Seddon, K.R.: Ionic liquids for clean technology. J. Chem. Technol. Biotechnol. 68, 351–356 (1997)

    CAS  Google Scholar 

  11. MacFarlane, D.R., Forsyth, M., Howlett, P.C., Pringle, J.M., Sun, J., Annat, G., Neil, W., Izgorodina, E.I.: Ionic liquids in electrochemical devices and processes: managing interfacial electrochemistry. Acc. Chem. Res. 40, 1165–1173 (2007)

    CAS  PubMed  Google Scholar 

  12. Palacio, M., Bhushan, B.: A review of ionic liquids for green molecular lubrication in nanotechnology. Tribol. Lett. 40, 247–268 (2010)

    CAS  Google Scholar 

  13. Payagala, T., Huang, J., Breitbach, Z.S., Sharma, P.S., Armstrong, D.W.: Unsymmetrical dicationic ionic liquids: manipulation of physicochemical properties using specific structural architectures. Chem. Mater. 19, 5848–5850 (2007)

    CAS  Google Scholar 

  14. Anderson, J.L., Ding, R., Ellern, A., Armstrong, D.W.: Structure and properties of high stability geminal dicationic ionic liquids. J. Am. Chem. Soc. 127, 593–604 (2005)

    CAS  PubMed  Google Scholar 

  15. Patil, R.A., Talebi, M., Xu, C., Bhawal, S.S., Armstrong, D.W.: Synthesis of thermally stable geminal dicationic ionic liquids and related ionic compounds: an examination of physicochemical properties by structural modification. Chem. Mater. 28, 4315–4323 (2016)

    CAS  Google Scholar 

  16. Patil, R.A., Talebi, M., Sidisky, L.M., Armstrong, D.W.: Examination of selectivities of thermally stable geminal dicationic ionic liquids by structural modification. Chromatographia 80, 1563–1574 (2017)

    CAS  Google Scholar 

  17. Khan, A.S., Man, Z., Arvina, A., Bustam, M.A., Nasrullah, A., Ullah, Z., Sarwono, A., Muhammad, N.: Dicationic imidazolium based ionic liquids: Synthesis and properties. J. Mol. Liq. 227, 98–105 (2017)

    CAS  Google Scholar 

  18. Moosavi, M., Khashei, F., Sedghamiz, E.: Molecular dynamics simulation of geminal dicationic ionic liquids [Cn(mim)2][NTf ]2—structural and dynamical properties. Phys. Chem. Chem. Phys. 20, 435–448 (2018)

    CAS  Google Scholar 

  19. Talebi, M., Patil, R.A., Armstrong, D.W.: Physicochemical properties of branched-chain dicationic ionic liquids. J. Mol. Liq. 256, 247–255 (2018)

    CAS  Google Scholar 

  20. Brown, P., Butts, C. P., Eastoe, J., Hernández, E. P., de Machado, F. L. A., de Oliveira, R. J.: Dication magnetic ionic liquids with tuneable heteroanions. Chem. Commun. 49, 2765–2767 (2013)

    Google Scholar 

  21. Nacham, O., Clark, K.D., Yu, H., Anderson, J.L.: Synthetic strategies for tailoring the physicochemical and magnetic properties of hydrophobic magnetic ionic liquids. Chem. Mater. 27, 923–931 (2015)

    CAS  Google Scholar 

  22. Yu, G., Zhao, D., Wen, L., Yang, S., Chen, X.: Viscosity of ionic liquids: Database, observation, and quantitative structure-property relationship analysis. AIChE J. 58, 2885–2899 (2012)

    CAS  Google Scholar 

  23. Jadhav, A.H., Chinnappan, A., Patil, R.H., Kostjuk, S.V., Kim, H.: Green chemical conversion of fructose into 5-hydroxymethylfurfural (HMF) using unsymmetrical dicationic ionic liquids under mild reaction condition. Chem. Eng. J. 243, 92–98 (2014)

    CAS  Google Scholar 

  24. Jadhav, A.H., Kim, H.: Short oligo (ethylene glycol) functionalized imidazolium dicationic room temperature ionic liquids: synthesis, properties, and catalytic activity in azidation. Chem. Eng. J. 200–202, 264–274 (2012)

    Google Scholar 

  25. Kärnä, M.K., Lahtinen, M.K., Valkonen, J.U.: Properties of new asymmetrically quaternized dicationic ammonium based room-temperature ionic liquids with ether functionality. J. Chem. Eng. Data 58, 1893–1908 (2013)

    Google Scholar 

  26. Zekri, N., Fareghi-Alamdari, R., Khodarahmi, Z.: Functionalized dicationic ionic liquids: green and efficient alternatives for catalysts in phthalate plasticizers preparation. J. Chem. Sci. 128, 1277–1284 (2016)

    CAS  Google Scholar 

  27. Bhatt, D.R., Maheria, K.C., Parikh, J.K.: A microwave assisted one pot synthesis of novel ammonium based dicationic ionic liquids. RSC Adv. 5, 12139–12143 (2015)

    CAS  Google Scholar 

  28. Okuniewska, P., Ramjugernath, D., Naidoo, P., Domańska, U.: Solubility of ionic liquids in 2-phenylethanol (PEA) and water. Fluid Phase Equilib. 376, 55–63 (2014)

    CAS  Google Scholar 

  29. Paduszyński, K., Chiyen, J., Ramjugernath, D., Letcher, T.M., Domańska, U.: Liquid–liquid phase equilibrium of (piperidinium-based ionic liquid+ an alcohol) binary systems and modelling with NRHB and PCP-SAFT. Fluid Phase Equilib. 305, 43–52 (2011)

    Google Scholar 

  30. Yang, X., Wang, J., Li, G.: Solubilities of triadimefon in acetone+ water from (278.15 to 333.15) K. J. Chem. Eng. Data 54, 1409–1411 (2009)

    CAS  Google Scholar 

  31. Hou, H., Wang, J., Chen, L., Lan, G., Li, J.: Experimental determination of solubility and metastable zone width of 3,4-bis(3-nitrofurazan-4-yl)furoxan (DNTF) in (acetic acid + water) systems from (298.15 K–338.15 K). Fluid Phase Equilib. 408, 123–131 (2016)

    CAS  Google Scholar 

  32. Jia, C., Cao, Y., Zuo, T., Hu, R., Yao, T., Song, H.: Solubility of benzothiazolium ionic liquids in water and in furfural. J. Chem. Eng. Data 60, 999–1005 (2015)

    CAS  Google Scholar 

  33. Apelblat, A., Manzurola, E.: Solubilities of l-aspartic, dl-aspartic, dl-glutamic, p-hydroxybenzoic, o-anisic, p-anisic, and itaconic acids in water from T = 278 K to T = 345 K. J. Chem. Thermodyn. 29, 1527–1533 (1997)

    CAS  Google Scholar 

  34. Apelblat, A., Manzurola, E.: Solubilities of o-acetylsalicylic, 4-aminosalicylic, 3,5-dinitrosalicylic, and p-toluic acid, and magnesium- dl -aspartate in water from T = (278 to 348) K. J. Chem. Thermodyn. 31, 85–91 (1999)

    CAS  Google Scholar 

  35. Ksiazczak, A., Moorthi, K., Nagata, I.: Solid–solid transition and solubility of even n-alkanes. Fluid Phase Equilib. 95, 15–29 (1994)

    CAS  Google Scholar 

  36. Wei, D., Pei, Y.: Measurement and correlation of solubility of diphenyl carbonate in alkanols. Ind. Eng. Chem. Res. 47, 8953–8956 (2008)

    CAS  Google Scholar 

  37. Yang, Y., Zhou, L., Wang, C., Li, Y., Huang, Y., Yang, W., Hou, B., Yin, Q.: Solubility and thermodynamic properties of a hexanediamine derivative in pure organic solvents and nonaqueous solvent mixtures. J. Solution Chem. 47, 1740–1767 (2018)

    CAS  Google Scholar 

  38. Domańska, U., Królikowska, M., Paduszyński, K.: Physico-chemical properties and phase behaviour of piperidinium-based ionic liquids. Fluid Phase Equilib. 303, 1–9 (2011)

    Google Scholar 

  39. Kim, K., Park, S., Yeon, S., Lee, H.: n-Butyl-N-methylmorpholinium bis(trifluoromethanesulfonyl) imide–PVdF (HFP) gel electrolytes. Electrochim. Acta 50, 5673–5678 (2005)

    CAS  Google Scholar 

  40. Bhatt, V.D., Gohil, K., Mishra, A.: Thermal energy storage capacity of some phase changing materials and ionic liquids. Int. J. ChemTech Res. 2, 1771–1779 (2010)

    CAS  Google Scholar 

  41. Zawadzki, M., Królikowska, M., Antonowicz, J., Lipiński, P., Karpińska, M.: Physicochemical and thermodynamic properties of the 1-alkyl-1-methylmorpholinium bromide, [C1Cn=3,4,5MOR]Br, or 1-methyl-1-pentylpiperidinium bromide, [C1C5PIP]Br + water binary systems. J. Chem. Thermodyn. 98, 324–337 (2016)

    CAS  Google Scholar 

  42. Królikowska, M., Karpińska, M., Zawadzki, M.: Phase equilibria study of (ionic liquid + water) binary mixtures. Fluid Phase Equilib. 354, 66–74 (2013)

    Google Scholar 

  43. Domańska, U., Zawadzki, M., Tshibangu, M.M., Ramjugernath, D., Letcher, T.M.: Phase equilibria study of N-butylquinolinium bis{(trifluoromethyl) sulfonyl imide + aromatic hydrocarbons, or an alcohol} binary systems. J. Chem. Thermodyn. 42, 1180–1186 (2010)

    Google Scholar 

  44. Domańska, U., Królikowski, M., Ramjugernath, D., Letcher, T.M., Tumba, K.: Phase equilibria and modeling of pyridinium-based ionic liquid solutions. J. Phys. Chem. B 114, 15011–15017 (2010)

    PubMed  Google Scholar 

  45. Domańska, U., Zawadzki, M.: Thermodynamic properties of the N-butylisoquinolinium bis(trifluoromethylsulfonyl) imide. J. Chem. Thermodyn. 43, 989–995 (2011)

    Google Scholar 

  46. Rhee, Y., Park, C., Nam, T., Shin, Y., Chi, S., Park, E.: Formulation of parenteral microemulsion containing itraconazole. Arch. Pharm. Res. 30, 114–123 (2007)

    CAS  PubMed  Google Scholar 

  47. Dougherty, D.A.: The cation–π interaction. Acc. Chem. Res. 46, 885–893 (2013)

    CAS  PubMed  Google Scholar 

  48. Ma, J.C., Dougherty, D.A.: The cation–π interaction. Chem. Rev. 97, 1303–1324 (1997)

    CAS  PubMed  Google Scholar 

  49. Zhi, W., Hua, Y., Yang, W., Kai, Y., Cao, Z.: Measurement and correlation of solubility of d-sorbitol in different solvents. J. Mol. Liq. 187, 201–205 (2013)

    CAS  Google Scholar 

  50. Perlovich, G.L., Kurkov, S.V., Bauer-Brandl, A.: Thermodynamics of solutions: II. Flurbiprofen and diflunisal as models for studying solvation of drug substances. Eur. J. Pharm. Sci. 19, 423–432 (2003)

    CAS  PubMed  Google Scholar 

  51. Carneiro, A.P., Rodríguez, O., Macedo, E.A.: Fructose and glucose dissolution in ionic liquids: solubility and thermodynamic modeling. Ind. Eng. Chem. Res. 52, 3424–3435 (2013)

    CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful for the Science and Technology Planning Project of Henan Province (No. 162102210056), Peoples Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuzhao Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Wang, J. & Fang, Y. Solubility and Thermodynamic Properties of Ammonium-Based Gemini Ionic Liquids in Pure Solvents. J Solution Chem 49, 145–165 (2020). https://doi.org/10.1007/s10953-020-00947-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-020-00947-7

Keywords

Navigation