Skip to main content
Log in

Thermal conductivity of Graphene-polymer composites: implications for thermal management

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Due to the high thermal conductivity, graphene could be used as a filler in matrix materials to improve the thermal performance. In this paper, the thermal conductivity and interfacial interaction of graphene/polyamide (GE/PA6), graphene/polypropylene (GE/PP) and graphene/high density polyethylene (GE/HDPE) composites with different graphene mass fractions were studied by melt-blending experiments and reverse non-equilibrium molecular dynamics. The results show that the filling of graphene effectively improves the thermal conductivity of the three polymers, and the comprehensive improvement effect is GE/PA6 > GE/PP > GE/HDPE. Simulation results show that the thermal conductivity of GE/PA6, GE/PP and GE/HDPE composites vary in the same trend as the experimental results. The interfacial thermal conductivity and interaction energy of the three composites are GE/PA6 > GE/PP > GE/HDPE. This study provides guidance for exploring the filling effect of graphene in polymer and preparing polymer materials with better thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

GE:

graphene

PA6:

polyamide

PP:

polypropylene

HDPE:

high density polyethylene

RNEMD:

reverse non-equilibrium molecular dynamics

References

  1. Prasher R (2006) Thermal Interface materials: historical perspective, status, and future directions. Proc IEEE 94(8):1571–1586

    Article  Google Scholar 

  2. Wong CP, Bollampally RS (2015) Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. Journal of Applied Polymer Science 74(14):3396–3403

    Article  Google Scholar 

  3. Saleem H, Edathil A, Ncube T et al (2016) Mechanical and thermal properties of thermoset–Graphene Nanocomposites. Macromolecular Materials & Engineering 301(3):231–259.1

    Article  Google Scholar 

  4. Ren L, Li Q, Lu J et al (2018) Enhanced thermal conductivity for Ag-deposited alumina sphere/epoxy resin composites through manipulating interfacial thermal resistance. Composites Part A: Applied Science & Manufacturing 107:561–569

    Article  Google Scholar 

  5. Kim K, Kim J (2016) Magnetic aligned AlN/epoxy composite for thermal conductivity enhancement at low filler content. Composites Part B Engineering 93:67–74

    Article  Google Scholar 

  6. Tang D, Su J, Kong M et al (2016) Preparation and properties of epoxy/BN highly thermal conductive composites reinforced with SiC whisker. Polym Compos 37(9):2611–2621

    Article  Google Scholar 

  7. Hwang Y, Kim J, Cho WC (2014) Thermal conductivity of thermally conductive ceramic composites and silicon carbide/epoxy composites through wetting process. Polymer Korea 38(6):782–786

    Article  Google Scholar 

  8. Burger N, Laachachi A, Mortazavi B et al (2015) Alignments and network of graphite fillers to improve thermal conductivity of epoxy-based composites. International Journal of Heat & Mass Transfer 89:505–513

    Article  Google Scholar 

  9. Kong Q-Q, Liu Z, Gao J-G et al (2014) Hierarchical Graphene–carbon Fiber composite paper as a flexible lateral heat spreader. Adv Funct Mater 24(27):4222–4228

    Article  Google Scholar 

  10. Li X, Shao L, Song N et al (2016) Enhanced thermal-conductive and anti-dripping properties of polyamide composites by 3D graphene structures at low filler content. Composites Part A Applied Science & Manufacturing 88:305–314

    Article  Google Scholar 

  11. Tonpheng B, Yu J, Andersson O (2016) Thermal conductivity, heat capacity, and cross-linking of Polyisoprene/Single-Wall carbon nanotube composites under high pressure. Macromolecules 42(23):9295–9301

    Article  Google Scholar 

  12. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  Google Scholar 

  13. Nika DL, Balandin AA (2017) Phonons and thermal transport in graphene and graphene-based materials. Rep Prog Phys 80(3):036502

    Article  Google Scholar 

  14. Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10(8):569–581

    Article  Google Scholar 

  15. Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    Article  Google Scholar 

  16. Dai W, Yu J, Wang Y et al (2014) Enhanced thermal and mechanical properties of polyimide/grapheme composites. Macromol Res 22(9):983–989

    Article  Google Scholar 

  17. Dai W, Yu J, Wang Y et al (2015) Enhanced thermal conductivity for polyimide composites with a three-dimensional silicon carbide nanowire@graphene sheets filler. J Mater Chem A 3(9):4884–4891

    Article  Google Scholar 

  18. Sun YF, Tao CB, Ban JM et al (2017) Preparation and thermal performances of 3D graphene network/epoxy resin thermal interface composite. Acta Materiae Compositae Sinica 34(6):1199–1204 (in Chinese)

    Google Scholar 

  19. Song SH, Park KH, Kim BH et al (2013) Enhanced thermal conductivity of epoxy-Graphene composites by using non-oxidized Graphene flakes with non-covalent functionalization. Adv Mater 25(5):732–737

    Article  Google Scholar 

  20. Ding P, Zhang J, Song N et al (2015) Anisotropic thermal conductive properties of hot-pressed polystyrene/graphene composites in the through-plane and in-plane directions. Compos Sci Technol 109:25–31

    Article  Google Scholar 

  21. Ruan K, Guo Y, Tang Y et al (2018) Improved thermal conductivities in polystyrene nanocomposites by incorporating thermal reduced graphene oxide via electrospinning-hot press technique. Composites Communications 10:68–72

    Article  Google Scholar 

  22. Alaghemandi M, Müllerplathe F, Böhm MC (2011) Thermal conductivity of carbon nanotube—polyamide-66 nanocomposites: reverse non-equilibrium molecular dynamics simulations. J Chem Phys 135(18):184905

    Article  Google Scholar 

  23. Kuang Y, Huang B (2015) Effects of covalent functionalization on the thermal transport in carbon nanotube/polymer composites: a multi-scale investigation. Polymer 56:563–571

    Article  Google Scholar 

  24. Wang Y, Yang C, Mai YW et al (2016) Effect of non-covalent functionalisation on thermal and mechanical properties of graphene-polymer nanocomposites. Carbon 102:311–318

    Article  Google Scholar 

  25. Wang M, Hu N, Zhou L et al (2015) Enhanced interfacial thermal transport across graphene–polymer interfaces by grafting polymer chains. Carbon 85:414–421

    Article  Google Scholar 

  26. Liu YJ, Zhang D (2019) Effect of covalent functionalization and phase change matrix on heat transfer across graphene/phase change material interfaces. Appl Therm Eng 115:38–45

    Article  Google Scholar 

  27. Gao Y, Müllerplathe F (2016) Increasing the thermal conductivity of Graphene-Polyamide-6,6 Nanocomposites by surface-grafted polymer chains: calculation with molecular dynamics and effective-medium approximation. J Phys Chem B 120(7):1336–1346

    Article  Google Scholar 

  28. Müllerplathe F (1998) A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J Chem Phys 106(14):6082–6085

    Article  Google Scholar 

  29. Kim H, Kobayashi S, Abdurrahim MA et al (2011) Graphene/polyethylene nanocomposites: effect of polyethylene functionalization and blending methods. Polymer 52(8):1837–1846

    Article  Google Scholar 

Download references

Acknowledgments

The National Natural Science Foundation of China (Grant No.51806136) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Erren Yao.

Ethics declarations

The authors declare no competing financial interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Zhang, Z., Gong, X. et al. Thermal conductivity of Graphene-polymer composites: implications for thermal management. Heat Mass Transfer 56, 1931–1945 (2020). https://doi.org/10.1007/s00231-020-02821-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-020-02821-0

Keywords

Navigation