Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T23:27:34.003Z Has data issue: false hasContentIssue false

Effect of Calcination Temperature on the Structure of Chitosan-Modified Montmorillonites and their Adsorption of Aflatoxin B1

Published online by Cambridge University Press:  01 January 2024

Chi Lian
Affiliation:
School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
Gaofeng Wang
Affiliation:
School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
WenQiang Lv
Affiliation:
School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
Zhiming Sun*
Affiliation:
School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
Shuilin Zheng
Affiliation:
School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
*
*E-mail address of corresponding author: zhimingsun@cumtb.edu.cn

Abstract

Chitosan (CTS) modified montmorillonite (Mnt) composites (CTS-Mnt), which have been widely reported for the adsorption of heavy-metal ions and biological dyes, have not been applied to the field of mycotoxin adsorption. The current study was focused on the preparation of CTS-Mnt by calcination as a mycotoxin adsorbent for the efficient removal of aflatoxin B1 (AFB1). The CTS-Mnt samples obtained were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and nitrogen adsorption/desorption analysis. The CTS-Mnt samples prepared at various calcination temperatures exhibited varying structural configurations, surface hydrophobicities, and texture properties. The results revealed that stable CTS-Mnt speciments, obtained at <350°C, displayed superior adsorption capacity for AFB1 from a simulated gastrointestinal tract, increasing from 0.51 mg/g of raw Mnt to 4.97 mg/g. With increased calcination temperature, the effect of pH on the adsorption process of AFB1 becomes negligible. This study demonstrates that the novel CTS-Mnt has tremendous potential as an AFB1 adsorbent.

Type
Article
Copyright
Copyright © Clay Minerals Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper was originally presented during the World Forum on Industrial Minerals, held in Qing Yang, China, October 2018

References

Abbès, S. Salah-Abbès, J. B. Hetta, M. M. Ibrahim, M. Abdel-Wahhab, M. A. Bacha, H., Efficacy of Tunisian montmorillonite for in vitro aflatoxin binding and in vivo amelioration of physiological alterations Applied Clay Science 2008 42 151157 10.1016/j.clay.2008.01.004.CrossRefGoogle Scholar
Anjos, FRD Ledoux, D. R. Rottinghaus, G. E. Chimonyo, M., Efficacy of Mozambican bentonite and diatomaceous earth in reducing the toxic effects of aflatoxins in chicks World Mycotoxin Journal 2016 9 6372 10.3920/WMJ2014.1842.CrossRefGoogle Scholar
Brunauer, S. Deming, L. S. Deming, W. E. Teller, E., On a theory of the van der Waals adsorption of gases Journal of the American Chemical Society 1940 62 17231732 10.1021/ja01864a025.CrossRefGoogle Scholar
Çelik, K., Uzatıcı, A., Coşkun, B., & Demir, E. (2013). Current developments in removal of mycotoxins by biological methods and chemical adsorbents. Journal of Hygienic Engineering & Design, 1720.Google Scholar
Chen, L. I. (2016). Analysis of the clinical effect of montmorillonite powder combined with bifidobacterium tetravaccine in the treatment of children with allergic diarrhea. Chinese Journal of the Frontiers of Medical Science, 2016(04). http://www.en.cnki.com.cn/Article_en/CJFDTotal-YXQY201604025.htm.Google Scholar
Daković, A. Kragović, M. Rottinghaus, G. E. Ledoux, D. R. Butkeraitis, P. Vojislavljević, D. Z. Zarić, S. D. Stamenić, L., Preparation and characterization of zinc-exchanged montmorillonite and its effectiveness as aflatoxin B1 adsorbent Materials Chemistry and Physics 2012 137 213220 10.1016/j.matchemphys.2012.09.010.CrossRefGoogle Scholar
del Pilar Monge, M. Magnoli, A. P. Bergesio, M. V. Tancredi, N. Magnoli, C. E. Chiacchiera, S. M., Activated carbons as potentially useful non-nutritive additives to prevent the effect of fumonisin B1 on sodium bentonite activity against chronic aflatoxicosis Food Additives & Contaminants 2016 33 10.Google Scholar
Hu, C. Deng, Y. Hu, H. Duan, Y. Zhai, K., Adsorption and intercalation of low and medium molar mass chitosans on/in the sodium montmorillonite International Journal of Biological Macromolecules 2016 92 11911196 10.1016/j.ijbiomac.2016.08.007.CrossRefGoogle ScholarPubMed
Jackson, L. S. Bullerman, L. B., Effect of processing on fusarium mycotoxins Oxygen Transport to Tissue XXXIII 1999 459 243261.Google ScholarPubMed
Ji, C. Fan, Y. Zhao, L., Review on biological degradation of mycotoxins Animal Nutrition 2016 2 03 511 10.1016/j.aninu.2016.07.003.CrossRefGoogle ScholarPubMed
Katti, K. S. Katti, D. R. Dash, R., Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering Biomedical Materials 2008 3 3 10.1088/1748-6041/3/3/034122.CrossRefGoogle ScholarPubMed
Marković, M. A. Daković, A. S. Rottinghaus, G. E. Stojanović, M. D. Dondur, V. T. Kragović, M. M. Zvonko, G., Aflatoxin B1 adsorption by the natural aluminosilicates – concentrate of montmorillonite and zeolite Hemijska Industrija 2016 70 519524 10.2298/HEMIND150515058M.CrossRefGoogle Scholar
Marković, M. Daković, A. Rottinghaus, G. E. Kragović, M. Petković, A. Krajišnik, D. Milić, J. Mercurio, M. de Gennaro, B., Adsorption of the mycotoxin zearalenone by clinoptilolite and phillipsite zeolites treated with cetylpyridinium surfactant Colloids & Surfaces B Biointerfaces 2016 151 324 10.1016/j.colsurfb.2016.12.033.CrossRefGoogle ScholarPubMed
Okolo, G. N. Everson, R. C. Neomagus, HWJP Roberts, M. J. Sakurovs, RJF, Comparing the porosity and surface areas of coal as measured by gas adsorption, mercury intrusion and SAXS techniques Fuel 2015 141 293304 10.1016/j.fuel.2014.10.046.CrossRefGoogle Scholar
Park, Y. Ayoko, G. A. Horváth, E. Kurdi, R. Kristof, J. Frost, R. L., Structural characterisation and environmental application of organoclays for the removal of phenolic compounds Journal of Colloid and Interface Science 2013 393 319334 10.1016/j.jcis.2012.10.067.CrossRefGoogle ScholarPubMed
Pereira, FAR Sousa, K. S. Cavalcanti, GRS Fonseca, M. G. De Souza, A. G. Alves, APM, Chitosan-montmorillonite biocomposite as an adsorbent for copper (II) cations from aqueous solutions International Journal of Biological Macromolecules 2013 61 471478 10.1016/j.ijbiomac.2013.08.017.CrossRefGoogle ScholarPubMed
Phillips, T. D. Sarr, A. B. Grant, P. G., Selective chemisorption and detoxification of aflatoxins by phyllosilicate clay Natural Toxins 1995 3 204213 10.1002/nt.2620030407 discussion 221.CrossRefGoogle ScholarPubMed
Sun, Z. Ankang, S. Bin, W. Gaofeng, W. Shuilin, Z., Adsorption behaviors of aflatoxin B1, and zearalenone by organo-rectorite modified with quaternary ammonium salts Journal of Molecular Liquids 2018 264 645651 10.1016/j.molliq.2018.05.091.CrossRefGoogle Scholar
Taylor-Lange, S. C. Rajabali, F. Holsomback, N. A. Riding, K. Juenger, MCG, The effect of zinc oxide additions on the performance of calcined sodium montmorillonite and illite shale supplementary cementitious materials Cement and Concrete Composites 2014 53 127135 10.1016/j.cemconcomp.2014.06.008.CrossRefGoogle Scholar
Thimm, N. Schwaighofer, B. Ottner, F. Fröschl, H. Greifenender, S. Binder, E., Adsorption of mycotoxins Mycotoxin Research 2001 17 219223 10.1007/BF03036440.CrossRefGoogle ScholarPubMed
Wang, L. Wang, A. Q., Removal of congo red from aqueous solution using a chitosan/organo-montmorillonite nanocomposite Journal of Chemical Technology & Biotechnology 2007 82 711720 10.1002/jctb.1713.CrossRefGoogle Scholar
Wang, L. Wang, A., Adsorption properties of congo red from aqueous solution onto surfactant-modified montmorillonite Journal of Hazardous Materials 2008 160 173180 10.1016/j.jhazmat.2008.02.104.CrossRefGoogle ScholarPubMed
Wang, S. F. Shen, L. Tong, Y. J. Chen, L. Phang, I. Y. Lim, P. Q., Biopolymer chitosan/montmorillonite nanocomposites: preparation and characterization Polymer Degradation and Stability 2005 90 123131 10.1016/j.polymdegradstab.2005.03.001.CrossRefGoogle Scholar
Wang, H. Tang, H. Liu, Z. Zhang, X. Hao, Z. Liu, Z., Removal of cobalt(II) ion from aqueous solution by chitosan–montmorillonite Journal of Environmental Sciences 2014 26 18791884 10.1016/j.jes.2014.06.021.CrossRefGoogle ScholarPubMed
Wang, X. Yang, L. Zhang, J. Wang, C. Li, Q., Preparation and characterization of chitosan–poly(vinyl alcohol)/bentonite nanocomposites for adsorption of Hg(II) ions Chemical Engineering Journal 2014 251 404412 10.1016/j.cej.2014.04.089.CrossRefGoogle Scholar
Wang, G. Miao, Y. Sun, Z. Zheng, S., Simultaneous adsorption of aflatoxin B1 and zearalenone by mono- and di-alkyl cationic surfactants modified montmorillonites Journal of Colloid and Interface Science 2017 511 6776 10.1016/j.jcis.2017.09.074.CrossRefGoogle ScholarPubMed
Wang, G. Lian, C. Xi, Y. Sun, Z. Zheng, S., Evaluation of nonionic surfactant modified montmorillonite as mycotoxins adsorbent for aflatoxin B1, and zearalenone Journal of Colloid and Interface Science 2018 518 4856 10.1016/j.jcis.2018.02.020.CrossRefGoogle ScholarPubMed
Wang, G. Xi, Y. Lian, C. Sun, Z. Zheng, S., Simultaneous detoxification of polar aflatoxin B1 and weak polar zearalenone from simulated gastrointestinal tract by zwitterionic montmorillonites Journal of Hazardous Materials 2019 364 227237 10.1016/j.jhazmat.2018.09.071.CrossRefGoogle ScholarPubMed
Xu, J. Wang, L. Zhu, Y., Decontamination of bisphenol A from aqueous solution by graphene adsorption Langmuir 2012 28 84188425 10.1021/la301476p.CrossRefGoogle ScholarPubMed
Zhang, Y. Gao, R. Liu, M. Shi, B. Shan, A. Cheng, B., Use of modified halloysite nanotubes in the feed reduces the toxic effects of zearalenone on sow reproduction and piglet development Theriogenology 2015 83 932941 10.1016/j.theriogenology.2014.11.027.CrossRefGoogle ScholarPubMed
Zhao, Z. Liu, N. Yang, L. Wang, J. Song, S. Nie, D., Cross-linked chitosan polymers as generic adsorbents for simultaneous adsorption of multiple mycotoxins Food Control 2015 57 362369 10.1016/j.foodcont.2015.05.014.CrossRefGoogle Scholar
Zhu, K., & Yao, R. (2014). Research progress on mycotoxins in food crop and its detection and removal methods. Cereals & Oils, 2014(8). http://en.cnki.com.cn/Article_en/CJFDTotal-LSYY201408018.htm.Google Scholar