Skip to main content
Log in

Investigation of Circulation Flow and Slag-Metal Behavior in an Industrial Single Snorkel Refining Furnace (SSRF): Application to Desulfurization

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A combined method of mathematical and physical modeling was used to investigate the circulation flow and slag-metal behavior in industrial SSRF and RH. The circulation flow of molten steel was simulated by using the coupled mathematical model. The results indicate that two different circulation modes are presented separately in SSRF and RH. The incomplete exchange of molten steel was found in SSRF because of the interaction between upflow and downflow in the snorkel, while the molten steel is fully exchanged between the vacuum chamber and ladle in RH. The flow behavior of top slag in the vacuum chamber was further investigated and compared by using cold models. It was found that many slag droplets are generated in the vacuum chamber, and then dragged into ladle by downflow for both reactors. The main difference is that the majority of droplets eventually float into ladle slag in RH, while most of the slag droplets in SSRF is cycled repeatedly, which allows slag droplets to have a longer time to contact with steel. Thus, the slag-steel reaction is more adequate in SSRF. Furthermore, the industrial desulfurization tests were designed to verify the difference in the refining effect between the two kinds of droplet behavior in actual production. The results indicate that the higher desulfurization degree was realized in SSRF with less consumption of argon than that of RH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. J. Zhang: Dali. Spec. Steel, 1978, vol. 3, pp. 5-26.

    Google Scholar 

  2. G.G. Cheng, Q.X. Rui, Z. Qin, and J. Zhang: China Metall., 2013, vol. 23, pp. 1-10.

    CAS  Google Scholar 

  3. Z.M. You, G.G. Cheng, X.C. Wang, Z. Qin, J. Tian, and F. Jiang: Metall. Trans. B, 2015, vol. 46B, pp. 459-72.

    Google Scholar 

  4. K. Miyamoto, H. Aoki, and S. Kitamura: CAMP-ISIJ., 1998, vol. 11, pp. 756.

    Google Scholar 

  5. H. Aoki, H. Furuta, N. Hirashima, and S. Kitamura: CAMP-ISIJ., 1998, vol. 11, pp. 757.

    Google Scholar 

  6. H. Aoki, H. Furuta, K. Fujiwara, K. Yamashita, K. Yonezawa, and S. Kitamura: CAMP-ISIJ., 1998, vol. 11, pp. 758.

    Google Scholar 

  7. H. Sugano, A. Shinkai, K. Kato, K. Miyamoto, K. Yamashita, and S. Kitamura: CAMP-ISIJ., 1999, vol. 12, pp. 747.

    Google Scholar 

  8. K. Miyamoto, H. Sugano, A. Shinkai, K. Kato, S. Kitamura, and K. Yamashita: CAMP-ISIJ., 1999, vol. 12, pp. 748.

    Google Scholar 

  9. M. Yano, S. Kitamura, K. Harashima, T. Inomoto, K. Azuma, and H. Nagahama: Nippon Steel Technical Report, 1994, vol. 61, pp.15-21.

    Google Scholar 

  10. S. Kitamura, H. Aoki, K. Miyamoto, H. Furuta, K. Yamashita, and K. Yonezawa: ISIJ Int., 2000, vol. 40, pp. 455-59.

    CAS  Google Scholar 

  11. H. Aoki, S. Kitamura, and K. Miyamoto: Iron and Steelmaker, 1999, vol. 26, 17-21.

    Google Scholar 

  12. Z. Qin, M.T. Zhu, G.G. Cheng, and J. Zhang: Spec. Steel, 2010, vol. 31, pp. 5–7.

    CAS  Google Scholar 

  13. Q.X. Rui, F. Jiang, Z. Ma, Z.M. You, G.G. Cheng, and J. Zhang: Steel Res. Int., 2013, vol. 84, pp. 192-97.

    CAS  Google Scholar 

  14. M.K. Mondal, N. Maruoka, S. Kitamura, G.S. Gupta, H. Nogami, and H. Shibata: Trans. Indian Inst. Met.,2012, vol. 65, pp. 321-31.

    CAS  Google Scholar 

  15. X.M. Yang, M. Zhang, F. Wang, J.P. Duan, and J. Zhang: Steel. Res. Int., 2012, vol. 83, pp. 55-82.

    CAS  Google Scholar 

  16. D.Q. Geng, X. Zhang, X. Liu, P. Wang, H.T. Liu, H.M. Chen, C.M. Dai, H. Lei, and J.C. He: Steel Res. Int., 2015, vol. 83, pp. 724-31.

    Google Scholar 

  17. H. Yang, S. Yang, J. Li, and J. Zhang. J. Iron Steel Res. Int., 2014, vol. 21, pp. 995-1001.

    CAS  Google Scholar 

  18. C. Shen, L.P. Wu, J.B. Guo, Y.W. Pan, and F. He: Ironmaking & Steelmaking, 2019, https://doi.org/10.1080/03019233.2019.1580029

    Article  Google Scholar 

  19. J.H. Wei, S.J. Zhu, and N.W. Yu. Ironmaking & steelmaking, 2000, vol. 27, 129-37.

    CAS  Google Scholar 

  20. M. Van Ende, Y. Kim, M. Cho, J. Choi, and I. Jung: Metall. Trans. B., 2011, vol. 42, pp. 477-89.

    Google Scholar 

  21. C.Y. Zhu, P.J. Chen, G.Q. Li, X.Y. Luo, and W. Zheng: ISIJ Int., 2016; vol. 56, pp. 1368-77.

    CAS  Google Scholar 

  22. S. He, G. Zhang, and Q. Wang: ISIJ Int, 2012, vol. 52 (6), pp. 977-83.

    CAS  Google Scholar 

  23. J.M. Peixoto, W.V. Gabriel, T.S. De Oliveira, C.A. Da Silva, I. A. Da Silva, and V. Seshadri: Metall. Trans. B., 2018, vol. 49 (5), pp. 2421-34.

    Google Scholar 

  24. Z. Qin: Ph.D. Dissertation, University of Science and Technology Beijing, Beijing, China, 2010.

  25. Q.X. Rui: Ph.D. Dissertation, University of Science and Technology Beijing, Beijing, China, 2012.

  26. B.H. Zhu, Q.C. Liu, D. Zhao, S. Ren, and M.R. Xu: Steel Res. Int. 2016, vol. 87 (2), pp.136-45.

    CAS  Google Scholar 

  27. S. Yamashita and M. Iguchi: ISIJ Int., 2003, vol.43(9), pp.1326-32.

    CAS  Google Scholar 

  28. Y. Liu, M. Ersson, H. Liu, P. G. Jönsson, and Y. Gan: Metall. Trans. B, 2019, vol. 50(1): 555-77.

    Google Scholar 

  29. D. Mukherjee, A.K. Shukla, and D.G. Senk: Metall. Trans. B, 2017, vol. 48 (2), pp. 763-71.

    Google Scholar 

  30. M.S.C. Terrazas and A.N. Conejo: Metall. Trans. B, 2015, vol. 46 (2), pp. 711-18.

    Google Scholar 

  31. W. Dai, G. G. Cheng, S.J. Li, Y. Huang, G.L. Zhang, Y.L. Qiu, and W.F. Zhu: ISIJ Int., 2019, vol. 59(7): 1214-23.

    CAS  Google Scholar 

  32. Y. Luo, C. Liu, Y. Ren, and L. Zhang: Steel Res. Int., 2018, vol. 89 (12), pp. 1-13.

    Google Scholar 

  33. H.P. Liu, Z.Y. Qi, and M.G. Xu: Steel Res. Int., 2011, vol. 82, pp. 440-58.

    CAS  Google Scholar 

  34. J.U. Brackbill, D.B. Kothe, and C. Zemach: J. Comput. Phys., 1992, vol. 100, pp.335–54.

    CAS  Google Scholar 

  35. M. van Sint-Annaland, N.G. Deen, and J.A.M. Kuipers: Chem. Eng. Sci., 2005, vol. 60 (11), pp. 2999-3011.

    Google Scholar 

  36. B.E. Launder and D.B. Spalding: Lectures in Mathematical Models of Turbulence. Academic Press, London, England, 1972.

    Google Scholar 

  37. S. He, G. Chen, and C. Guo: Ironmaking & Steelmaking, 2019, vol. 46 (8), pp. 771-76.

    CAS  Google Scholar 

  38. L.M. Li, Z.Q. Liu, M.X. Cao, and B.K. Li: JOM, 2015, vol. 67, pp. 1459-67.

    CAS  Google Scholar 

  39. J.L. Xia, T. Ahokainen, and L. Holappa: Scand. J. Metall., 2001, vol. 30 (2), pp. 69-76.

    CAS  Google Scholar 

  40. H.T. Ling, F. Li, L.F. Zhang, and A.N. Conejo: Metall. Trans. B, 2016, vol. 47, pp. 1950-61.

    Google Scholar 

  41. S.W.P. Cloete, J.J. Eksteen, and S.M. Bradshaw: Miner. Eng., 2013, vol. 46, pp. 16-24.

    Google Scholar 

  42. G.J. Chen, S.P. He, and Y.G. Li: Metall. Trans. B, 2017, vol. 48, pp. 2176-86.

    Google Scholar 

  43. L.M. Li and B.K. Li: JOM, 2016, vol. 68, pp. 2160-69.

    CAS  Google Scholar 

  44. Y. Li, W.T. Lou, and M.Y. Zhu: Ironmaking Steelmaking, 2013, vol. 40, pp. 505-14.

    CAS  Google Scholar 

  45. M. Sano, K. Mori, and Y. Fujita: Tetsu-to-Hagane, 1979, vol. 65, pp. 1140-48.

    CAS  Google Scholar 

  46. Q. Cao and L. Nastac: JOM, 2018, vol. 70, pp. 2071-81.

    CAS  Google Scholar 

  47. H. Ling and L. Zhang: Metall. Trans. B, 2018, vol. 49 (5), pp. 2709-21.

    Google Scholar 

  48. W.X. Dai, G.G. Cheng, S.J. Li, Y. Huang, and G.L. Zhang: ISIJ Int., 2019, vol. 59 (12), pp. 2228-38.

    Google Scholar 

  49. L. Zhang and F. Li: JOM., 2014, vol. 66 (7), pp. 1227-40.

    CAS  Google Scholar 

  50. V. Seshadri and S. L. S. Costa: Trans. Iron Steel Inst. Jpn., 1986, vol. 26(2), pp.133-38.

    Google Scholar 

  51. L. Neves, H. Oliveira, and R.P. Tavares: ISIJ Int., 2009, vol. 49(8), pp.1141-49.

    CAS  Google Scholar 

  52. L. Zhang and C. Liu: Ironmaking & Steelmaking, 2018, vol. 45 (2), pp. 145-56.

    Google Scholar 

  53. H. Lei and J. He: Ironmaking & Steelmaking, 2012, vol. 39 (6), pp. 431-38.

    Google Scholar 

Download references

Acknowledgment

The authors express thanks to the National Natural Science Foundation of China (Grant Nos. 51674024 and 51874034) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoguang Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 11, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, W., Cheng, G., Zhang, G. et al. Investigation of Circulation Flow and Slag-Metal Behavior in an Industrial Single Snorkel Refining Furnace (SSRF): Application to Desulfurization. Metall Mater Trans B 51, 611–627 (2020). https://doi.org/10.1007/s11663-020-01781-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01781-4

Navigation