Skip to main content
Log in

Mesoscale Modeling of Dynamic Recrystallization: Multilevel Cellular Automaton Simulation Framework

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The main attraction of cellular automaton (CA) method used in computational material science lies on not only the simulation of recrystallization without the complicated differential equations calculation, but also the visualization of nucleation and grain growth during discontinuous recrystallization. In this work, by incorporating the idea of multilevel cellular space into the classical CA simulation framework and formulating cellular state transformation rules and data transfer rules between different levels of cellular space, the multilevel cellular automaton (MCA) model for dynamic recrystallization (DRX) is constructed for the first time. The developed MCA model includes a multilevel recrystallized nucleation (MRN) module and a full-field multilevel grain topological deformation (FMGTD) module. The thermal compression experiments of 316LN stainless steel are carried out, and the developed MCA model is applied to the numerical simulation of DRX for 316LN steel. The accuracy and reliability of this model are verified by comparing simulation results with experimental results. The influences of simulation parameters such as the number of levels N in the FMGTD module and the discrete strain increment on simulation results are discussed. The discrete cellular space area (i.e., grain topology mapping accuracy) in the MCA model increases with N but decreases with the discrete strain increment. The results show that the developed MCA model can not only describe the grain topological deformation in the DRX process more accurately but also more compatible with the physical mechanism of recrystallized nucleation. The calculation accuracy of the MCA model is higher than the existing CA model. Besides, the MCA model can be closer to the real deformation process while ensuring the high grain topology mapping accuracy and solve the problem of the loss of grain boundary area in the existing CA model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. 1. E.P. Busso: Int. J. Plast., 1998, vol. 14, pp. 319-53.

    Article  CAS  Google Scholar 

  2. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. Mcnelley, H.J. Mcqueen, and A.D. Rollett: Mater. Sci. Eng. A, 1997, vol. 238, pp. 219-74.

    Article  Google Scholar 

  3. 3. K. Huang and R. Logé: Mater. Des., 2016, vol. 111, pp. 548-74.

    Article  CAS  Google Scholar 

  4. 4. H. Li, X. Sun, and H. Yang: Int. J. Plast., 2016, vol. 87, pp. 154-80.

    Article  CAS  Google Scholar 

  5. 5. H. McQueen: Mater. Sci. Eng. A, 2004, vol. 387, pp. 203-08.

    Article  CAS  Google Scholar 

  6. 6. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas: Prog. Mater. Sci., 2014, vol. 60, pp. 130-207.

    Article  CAS  Google Scholar 

  7. 7. T. Sakai and J.J. Jonas: Acta Metall., 1984, vol. 32, pp. 189-209.

    Article  CAS  Google Scholar 

  8. 8. F. Chen, Z. Cui, and S. Chen: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5073-80.

    Article  CAS  Google Scholar 

  9. 9. G. Henshall, M. Kassner, and H. McQueen: Metall. Trans. A, 1992, vol. 23, pp. 881-89.

    Article  Google Scholar 

  10. 10. S. Ion, F. Humphreys, and S. White: Acta Metall., 1982, vol. 30, pp. 1909-19.

    Article  CAS  Google Scholar 

  11. 11. M. Azarbarmas, M. Aghaie-Khafri, J. Cabrera, and J. Calvo: Mater. Sci. Eng. A, 2016, vol. 678, pp. 137-52.

    Article  CAS  Google Scholar 

  12. 12. Z. Liu, P. Li, L. Xiong, T. Liu, and L. He: Mater. Sci. Eng. A, 2017, vol. 680, pp. 259-69.

    Article  CAS  Google Scholar 

  13. 13. H. Paul, J. Driver, and Z. Jasieński: Acta Mater., 2002, vol. 50, pp. 815-30.

    Article  CAS  Google Scholar 

  14. 14. P. Vianco and J. Rejent: J. Electron. Mater., 2009, vol. 38, pp. 1815-25.

    Article  CAS  Google Scholar 

  15. 15. A. Belyakov, H. Miura, and T. Sakai: Mater. Sci. Eng. A, 1998, vol. 255, pp. 139-47.

    Article  Google Scholar 

  16. 16. M. Myshlyaev, H. McQueen, A. Mwembela, and E. Konopleva: Mater. Sci. Eng. A, 2002, vol. 337, pp. 121-33.

    Article  Google Scholar 

  17. 17. M. Avrami: J. Chem. Phys., 1939, vol. 7, pp. 1103-12.

    Article  CAS  Google Scholar 

  18. 18. M. Avrami: J. Chem. Phys., 1940, vol. 8, pp. 212-24.

    Article  CAS  Google Scholar 

  19. 19. X.M. Chen, Y. Lin, D.X. Wen, J.L. Zhang, and M. He: Mater. Des., 2014, vol. 57, pp. 568-77.

    Article  CAS  Google Scholar 

  20. 20. S. Gourdet and F. Montheillet: Acta Mater., 2003, vol. 51, pp. 2685-99.

    Article  CAS  Google Scholar 

  21. 21. J.J. Jonas, X. Quelennec, L. Jiang, and É. Martin: Acta Mater., 2009, vol. 57, pp. 2748-56.

    Article  CAS  Google Scholar 

  22. 22. E. Poliak and J. Jonas: Acta Mater., 1996, vol. 44, pp. 127-36.

    Article  CAS  Google Scholar 

  23. 23. P. Zhao, Y. Wang, and S.R. Niezgoda: Int. J. Plast., 2018, vol. 100, pp. 52-68.

    Article  CAS  Google Scholar 

  24. 24. A.A. Brown and D.J. Bammann: Int. J. Plast., 2012, vol. 32, pp. 17-35.

    Article  CAS  Google Scholar 

  25. 25. X. Fan and H. Yang: Int. J. Plast., 2011, vol. 27, pp. 1833-52.

    Article  CAS  Google Scholar 

  26. 26. S.F. Medina and C.A. Hernandez: Acta Mater., 1996, vol. 44, pp. 165-71.

    Article  CAS  Google Scholar 

  27. 27. J. Qu, Q. Jin and B. Xu: Int. J. Plast., 2005, vol. 21, pp. 1267-302.

    Article  CAS  Google Scholar 

  28. 28. F. Roters, D. Raabe, and G. Gottstein: Acta Mater., 2000, vol. 48, pp. 4181-89.

    Article  CAS  Google Scholar 

  29. 29. E. Puchi-Cabrera, J. Guérin, J. La Barbera-Sosa, M. Dubar, and L. Dubar: Int. J. Plast., 2018, vol. 108, pp. 70-87.

    Article  CAS  Google Scholar 

  30. 30. E. Puchi-Cabrera, M. Staia, J. Guérin, J. Lesage, M. Dubar, and D. Chicot: Int. J. Plast., 2013, vol. 51, pp. 145-60.

    Article  CAS  Google Scholar 

  31. 31. E. Puchi-Cabrera, M. Staia, J. Guérin, J. Lesage, M. Dubar, and D. Chicot: Int. J. Plast., 2014, vol. 54, pp. 113-31.

    Article  CAS  Google Scholar 

  32. 32. E.S. Puchi-Cabrera, J.-D. Guérin, M. Dubar, M.H. Staia, J. Lesage, and D. Chicot: Mater. Des., 2014, vol. 62, pp. 255-64.

    Article  CAS  Google Scholar 

  33. 33. H. Hallberg: Metals, 2011, vol. 1, pp. 16-48.

    Article  CAS  Google Scholar 

  34. C. Krill Iii and L.-Q. Chen: Acta Mater., 2002, vol. 50, pp. 3059–75.

  35. 35. V. Tikare, E. Holm, D. Fan, and L.-Q. Chen: Acta Mater., 1998, vol. 47, pp. 363-71.

    Article  Google Scholar 

  36. 36. P. Zhao, T.S.E. Low, Y. Wang, and S.R. Niezgoda: Int. J. Plast., 2016, vol. 80, pp. 38-55.

    Article  CAS  Google Scholar 

  37. 37. M. Bernacki, Y. Chastel, T. Coupez, and R.E. Logé: Scripta Mater., 2008, vol. 58, pp. 1129-32.

    Article  CAS  Google Scholar 

  38. 38. M. Bernacki, R.E. Logé, and T. Coupez: Scripta Mater., 2011, vol. 64, pp. 525-28.

    Article  CAS  Google Scholar 

  39. 39. H. Hallberg: Modell. Simul. Mater. Sci. Eng., 2013, vol. 21, p. 085012.

    Article  CAS  Google Scholar 

  40. 40. B. Scholtes, M. Shakoor, A. Settefrati, P.-O. Bouchard, N. Bozzolo, and M. Bernacki: Comput. Mater. Sci., 2015, vol. 109, pp. 388-98.

    Article  Google Scholar 

  41. 41. S. Hore, S.K. Das, S. Banerjee, and S. Mukherjee: Acta Mater., 2013, vol. 61, pp. 7251-59.

    Article  CAS  Google Scholar 

  42. 42. O. Ivasishin, S. Shevchenko, N. Vasiliev, and S. Semiatin: Mater. Sci. Eng. A, 2006, vol. 433, pp. 216-32.

    Article  CAS  Google Scholar 

  43. 43. D. Srolovitz, G. Grest, and M. Anderson: Acta Metall., 1986, vol. 34, pp. 1833-45.

    Article  CAS  Google Scholar 

  44. 44. D. Srolovitz, G. Grest, M. Anderson, and A. Rollett: Acta Metall., 1988, vol. 36, pp. 2115-28.

    Article  CAS  Google Scholar 

  45. 45. K. Kawasaki, T. Nagai, and K. Nakashima: Philos. Mag. B, 1989, vol. 60, pp. 399-421.

    Article  Google Scholar 

  46. 46. D. Weygand, Y. Brechet, and J. Lepinoux: Philos. Mag. B, 1998, vol. 78, pp. 329-52.

    Article  CAS  Google Scholar 

  47. 47. P. Asadi, M.K.B. Givi, and M. Akbari: Int. J. Adv. Manuf. Technol., 2016, vol. 83, pp. 301-11.

    Article  Google Scholar 

  48. 48. M. Azarbarmas and M. Aghaie-Khafri: Metall. Mater. Trans. A, 2018, vol. 49, pp. 1916-30.

    Article  CAS  Google Scholar 

  49. 49. M. Azarbarmas, S. Mirjavadi, A. Ghasemi, and A. Hamouda: Metals, 2018, vol. 8, p. 923.

    Article  CAS  Google Scholar 

  50. 50. M.S. Chen, W.Q. Yuan, Y. Lin, H.B. Li, and Z.H. Zou: Vacuum, 2017, vol. 146, pp. 142-51.

    Article  CAS  Google Scholar 

  51. 51. R. Ding and Z. Guo: Acta Mater., 2001, vol. 49, pp. 3163-75.

    Article  CAS  Google Scholar 

  52. 52. R. Ding and Z. Guo: Comput. Mater. Sci., 2002, vol. 23, pp. 209-18.

    Article  CAS  Google Scholar 

  53. 53. R. Goetz and V. Seetharaman: Scripta Mater., 1998, vol. 38, pp. 405-13.

    Article  CAS  Google Scholar 

  54. 54. G. Kugler and R. Turk: Acta Mater., 2004, vol. 52, pp. 4659-68.

    Article  CAS  Google Scholar 

  55. 55. Ł. Łach, J. Nowak, and D. Svyetlichnyy: J. Mater. Process. Technol., 2018, vol. 255, pp. 488-99.

    Article  CAS  Google Scholar 

  56. H. Li, C. Wu, and H. Yang: Int. J. Plast., 2013, pp. 271–91.

  57. 57. L. Madej, M. Sitko, A. Legwand, K. Perzynski, and K. Michalik: J. Comput. Sci., 2018, vol. 26, pp. 66-77.

    Article  Google Scholar 

  58. 58. J. Majta, Ł. Madej, D.S. Svyetlichnyy, K. Perzyński, M. Kwiecień, and K. Muszka: Mater. Sci. Eng. A, 2016, vol. 671, pp. 204-13.

    Article  CAS  Google Scholar 

  59. 59. E. Popova, Y. Staraselski, A. Brahme, R. Mishra, and K. Inal: Int. J. Plast., 2015, vol. 66, pp. 85-102.

    Article  CAS  Google Scholar 

  60. 60. D. Raabe: Philos. Mag. A, 1999, vol. 79, pp. 2339-58.

    Article  CAS  Google Scholar 

  61. 61. D. Raabe: Acta Mater., 2004, vol. 52, pp. 2653-64.

    Article  CAS  Google Scholar 

  62. 62. D. Raabe and A. Godara: Modell. Simul. Mater. Sci. Eng., 2005, vol. 13, pp. 733-51.

    Article  CAS  Google Scholar 

  63. 63. A. Samanta, N. Shen, H. Ji, W. Wang, J. Li, and H. Ding: J. Manuf. Sci. Eng., 2018, vol. 140, p. 031016.

    Article  Google Scholar 

  64. 64. N. Shen, A. Samanta, and H. Ding: Procedia CIRP, 2017, vol. 58, pp. 543-48.

    Article  Google Scholar 

  65. 65. D. Svyetlichnyy: Comput. Mater. Sci., 2010, vol. 50, pp. 92-97.

    Article  CAS  Google Scholar 

  66. 66. D.S. Svyetlichnyy: Comput. Mater. Sci., 2012, vol. 60, pp. 153-62.

    Article  CAS  Google Scholar 

  67. 67. D.S. Svyetlichnyy: Modell. Simul. Mater. Sci. Eng., 2014, vol. 22, p. 085001.

    Article  CAS  Google Scholar 

  68. 68. N. Xiao, C. Zheng, D. Li, and Y. Li: Comput. Mater. Sci., 2008, vol. 41, pp. 366-74.

    Article  CAS  Google Scholar 

  69. 69. N. Yazdipour, C.H. Davies, and P.D. Hodgson: Comput. Mater. Sci., 2008, vol. 44, pp. 566-76.

    Article  CAS  Google Scholar 

  70. 70. C. Zheng and D. Raabe: Acta Mater., 2013, vol. 61, pp. 5504-17.

    Article  CAS  Google Scholar 

  71. 71. C. Zheng, D. Raabe, and D. Li: Acta Mater., 2012, vol. 60, pp. 4768-79.

    Article  CAS  Google Scholar 

  72. 72. C. Zheng, N. Xiao, D. Li, and Y. Li: Comput. Mater. Sci., 2008, vol. 44, pp. 507-14.

    Article  CAS  Google Scholar 

  73. 73. X. Zhou, H. Zhang, G. Wang, X. Bai, Y. Fu, and J. Zhao: J. Mater. Sci., 2016, vol. 51, pp. 6735-49.

    Article  CAS  Google Scholar 

  74. 74. F. Chen and Z. Cui: Modell. Simul. Mater. Sci. Eng., 2012, vol. 20, p. 045008.

    Article  CAS  Google Scholar 

  75. 75. F. Chen, Z. Cui, J. Liu, W. Chen, and S. Chen: Mater. Sci. Eng. A, 2010, vol. 527, pp. 5539-49.

    Article  CAS  Google Scholar 

  76. 76. F. Chen, Z. Cui, J. Liu, X. Zhang, and W. Chen: Modell. Simul. Mater. Sci. Eng., 2009, vol. 17, p. 075015.

    Article  CAS  Google Scholar 

  77. 77. F. Chen, Z. Cui, H. Ou, and H. Long: Appl. Phys. A, 2016, vol. 122, p. 890.

    Article  CAS  Google Scholar 

  78. 78. F. Chen, K. Qi, Z. Cui, and X. Lai: Comput. Mater. Sci., 2014, vol. 83, pp. 331-40.

    Article  CAS  Google Scholar 

  79. 79. R. Fisher, L. Darken, and K. Carroll: Acta Metall., 1954, vol. 2, pp. 368-73.

    Article  CAS  Google Scholar 

  80. 80. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 3rd ed., Elsevier, Amsterdam, 2017, pp. 145–304.

    Book  Google Scholar 

  81. 81. D. Ponge and G. Gottstein: Acta Mater., 1998, vol. 46, pp. 69-80.

    Article  CAS  Google Scholar 

  82. 82. R. Zhang, Z. Wang, Z. Shi, B. Wang, and W. Fu: Strength. Mater., 2015, vol. 47, pp. 94-99.

    Article  CAS  Google Scholar 

  83. 83. A. Dehghan-Manshadi, M.R. Barnett, and P. Hodgson: Mater. Sci. Eng. A, 2008, vol. 485, pp. 664-72.

    Article  CAS  Google Scholar 

  84. 84. A. Dehghan-Manshadi, M.R. Barnett, and P. Hodgson: Metall. Mater. Trans. A, 2008, vol. 39, pp. 1359-70.

    Article  CAS  Google Scholar 

  85. 85. H. Sun, Y. Sun, R. Zhang, M. Wang, R. Tang, and Z. Zhou: Mater. Des., 2014, vol. 64, pp. 374-80.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51705316 & 51675335), Shanghai Pujiang Program (Grant No. 18PJD019), and the Program of Shanghai Academic Research Leader (Grant No. 19XD1401900).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Chen or Haiming Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 30, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Zhu, H., Zhang, H. et al. Mesoscale Modeling of Dynamic Recrystallization: Multilevel Cellular Automaton Simulation Framework. Metall Mater Trans A 51, 1286–1303 (2020). https://doi.org/10.1007/s11661-019-05620-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05620-3

Navigation