Skip to main content
Log in

Robust multivariate density estimation under Gaussian noise

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Observation of random variables is often corrupted by additive Gaussian noise. Noise-reducing data processing is time-consuming and may introduce unwanted artifacts. In this paper, a novel approach to description of random variables insensitive with respect to Gaussian noise is presented. The proposed quantities represent the probability density function of the variable to be observed, while noise estimation, deconvolution or denoising are avoided. Projection operators are constructed, that divide the probability density function into a non-Gaussian and a Gaussian part. The Gaussian part is subsequently removed by modifying the characteristic function to ensure the invariance. The descriptors are based on the moments of the probability density function of the noisy random variable. The invariance property and the performance of the proposed method are demonstrated on real image data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. It is possible to extend this definition also to singular covariance matrices by admitting degenerated Gaussian densities in \({\mathcal {S}}\).

References

  • Bar, W., & Dittrich, F. (1971). Useful formula or moment computation of normal random variables with nonzero means. IEEE Transactions on Automatic Control, 16(3), 263–265.

    Article  Google Scholar 

  • Blacher, R. (2003). Multivariate quadratic forms of random vectors. Journal of Multivariate Analysis, 87(1), 2–23.

    Article  MathSciNet  MATH  Google Scholar 

  • Buades, A., Coll, B., & Morel, J. M. (2005a). A non-local algorithm for image denoising. In IEEE computer society conference on computer vision and pattern recognition, 2005, CVPR 2005 (Vol. 2, pp. 60–65). IEEE.

  • Buades, A., Coll, B., & Morel, J. M. (2005b). A review of image denoising algorithms, with a new one. Multiscale Modeling and Simulation, 4(2), 490–530.

    Article  MathSciNet  MATH  Google Scholar 

  • Butucea, C., Comte, F., et al. (2009). Adaptive estimation of linear functionals in the convolution model and applications. Bernoulli, 15(1), 69–98.

    Article  MathSciNet  MATH  Google Scholar 

  • Carroll, R. J., & Hall, P. (1988). Optimal rates of convergence for deconvolving a density. Journal of the American Statistical Association, 83(404), 1184–1186.

    Article  MathSciNet  MATH  Google Scholar 

  • Chambolle, A., & Lions, P. L. (1997). Image recovery via total variation minimization and related problems. Numerische Mathematik, 76(2), 167–188.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, G., Xie, W., & Zhao, Y. (2013). Wavelet-based denoising: A brief review. In 2013 fourth international conference on intelligent control and information processing (ICICIP) (pp. 570–574). IEEE.

  • Cho, D., & Bui, T. D. (2005). Multivariate statistical approach for image denoising. In IEEE International conference on acoustics, speech, and signal processing, 2005. Proceedings (ICASSP’05) (Vol. 4, pp. 4–589). IEEE.

  • Comte, F., & Lacour, C. (2011). Data-driven density estimation in the presence of additive noise with unknown distribution. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(4), 601–627.

    Article  MathSciNet  MATH  Google Scholar 

  • De Brabanter, K., & De Moor, B. (2012). Deconvolution in nonparametric statistics. In ESANN.

  • Efron, B. (2014). The Bayes deconvolution problem. Stanford: Division of Biostatistics, Stanford University.

    MATH  Google Scholar 

  • Fan, J. (1992). Deconvolution with supersmooth distributions. Canadian Journal of Statistics, 20(2), 155–169.

    Article  MathSciNet  MATH  Google Scholar 

  • Flusser, J., Boldyš, J., & Zitová, B. (2003). Moment forms invariant to rotation and blur in arbitrary number of dimensions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(2), 234–246.

    Article  Google Scholar 

  • Flusser, J., & Suk, T. (1998). Degraded image analysis: An invariant approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(6), 590–603.

    Article  Google Scholar 

  • Flusser, J., Suk, T., Boldyš, J., & Zitová, B. (2015). Projection operators and moment invariants to image blurring. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(4), 786–802.

    Article  Google Scholar 

  • Galigekere, R. R., & Swamy, M. N. S. (2006). Moment patterns in the Radon space: Invariance to blur. Optical Engineering, 45(7), 0770036.

    Article  Google Scholar 

  • Gopalan, R., Turaga, P., & Chellappa, R. (2012). A blur-robust descriptor with applications to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(6), 1220–1226.

    Article  Google Scholar 

  • Gould, H., & Quaintance, J. (2012). Double fun with double factorials. Mathematics Magazine, 85(3), 177–192.

    Article  MathSciNet  MATH  Google Scholar 

  • Höschl, C, I. V., & Flusser, J. (2016). Robust histogram-based image retrieval. Pattern Recognition Letters, 69(1), 72–81.

    Article  Google Scholar 

  • Isserlis, L. (1918). On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables. Biometrika, 12(1/2), 134–139.

    Article  Google Scholar 

  • Johannes, J., et al. (2009). Deconvolution with unknown error distribution. The Annals of Statistics, 37(5A), 2301–2323.

    Article  MathSciNet  MATH  Google Scholar 

  • Kappus, J., Mabon, G., et al. (2014). Adaptive density estimation in deconvolution problems with unknown error distribution. Electronic Journal of Statistics, 8(2), 2879–2904.

    Article  MathSciNet  MATH  Google Scholar 

  • Khireddine, A., Benmahammed, K., & Puech, W. (2007). Digital image restoration by Wiener filter in 2D case. Advances in Engineering Software, 38(7), 513–516.

    Article  Google Scholar 

  • Makaremi, I., & Ahmadi, M. (2012). Wavelet domain blur invariants for image analysis. IEEE Transactions on Image Processing, 21(3), 996–1006.

    Article  MathSciNet  MATH  Google Scholar 

  • Meister, A. (2009). Deconvolution problems in nonparametric statistics. Lecture notes in statistics (Vol. 193). Berlin: Springer.

  • Motwani, M. C., Gadiya, M. C., Motwani, R. C., & Harris, F. C. (2004). Survey of image denoising techniques. In Proceedings of GSPX (pp. 27–30).

  • Ojansivu, V., & Heikkilä, J. (2007). Image registration using blur-invariant phase correlation. IEEE Signal Processing Letters, 14(7), 449–452.

    Article  Google Scholar 

  • Pass, G., & Zabih, R. (1996). Histogram refinement for content-based image retrieval. In Proceedings 3rd IEEE workshop on applications of computer vision WACV’96 (pp. 96–102). IEEE.

  • Pedone, M., Flusser, J., & Heikkilä, J. (2013). Blur invariant translational image registration for \(N\)-fold symmetric blurs. IEEE Transactions on Image Processing, 22(9), 3676–3689.

    Article  Google Scholar 

  • Pensky, M., Vidakovic, B., et al. (1999). Adaptive wavelet estimator for nonparametric density deconvolution. The Annals of Statistics, 27(6), 2033–2053.

    Article  MathSciNet  MATH  Google Scholar 

  • Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 629–639.

    Article  Google Scholar 

  • Schott, J. R. (2003). Kronecker product permutation matrices and their application to moment matrices of the normal distribution. Journal of Multivariate analysis, 87(1), 177–190.

    Article  MathSciNet  MATH  Google Scholar 

  • Song, I., & Lee, S. (2015). Explicit formulae for product moments of multivariate Gaussian random variables. Statistics and Probability Letters, 100, 27–34.

    Article  MathSciNet  MATH  Google Scholar 

  • Starck, J. L., Candès, E. J., & Donoho, D. L. (2002). The curvelet transform for image denoising. IEEE Transactions on Image Processing, 11(6), 670–684.

    Article  MathSciNet  MATH  Google Scholar 

  • Stefanski, L. A., & Carroll, R. J. (1990). Deconvolving kernel density estimators. Statistics, 21(2), 169–184.

    Article  MathSciNet  MATH  Google Scholar 

  • Swain, M. J., & Ballard, D. H. (1991). Color indexing. International Journal of Computer Vision, 7(1), 11–32.

    Article  Google Scholar 

  • Teuber, T., Remmele, S., Hesser, J., & Steidl, G. (2012). Denoising by second order statistics. Signal Processing, 92(12), 2837–2847.

    Article  Google Scholar 

  • Triantafyllopoulos, K. (2003). On the central moments of the multidimensional Gaussian distribution. Mathematical Scientist, 28(2), 125–128.

    MathSciNet  MATH  Google Scholar 

  • Von Rosen, D. (1988). Moments for matrix normal variables. Statistics: A Journal of Theoretical and Applied Statistics, 19(4), 575–583.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, L., & Healey, G. (1998). Using Zernike moments for the illumination and geometry invariant classification of multispectral texture. IEEE Transactions on Image Processing, 7(2), 196–203.

    Article  Google Scholar 

  • Zhang, H., Shu, H., Han, G. N., Coatrieux, G., Luo, L., & Coatrieux, J. L. (2010). Blurred image recognition by Legendre moment invariants. IEEE Transactions on Image Processing, 19(3), 596–611.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitka Kostková.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been supported by the Czech Science Foundation (Grant No. GA18-07247S), by the Grant SGS18/188/OHK4/3T/14 provided by the Ministry of Education, Youth, and Sports of the Czech Republic (MŠMT ČR), by Praemium Academiae, and by the Joint Laboratory SALOME2. Thanks to Dr. Cyril Höschl IV for kind providing the test images used in the experiments in Section 8.2.

Appendices

Explicit formula for Gaussian moments in two dimensions

In this Appendix, we present the derivation of the explicit formula for 2D central moments of the Gaussian probability density function \(f_{N}(\mathbf {x})\) with the covariance matrix

$$\begin{aligned} \varSigma = \left( \begin{array}{cc} \sigma _1 &{}\quad \rho \\ \rho &{}\quad \sigma _2 \end{array} \right) . \end{aligned}$$

It holds for the inverse matrix \(\varSigma ^{-1}\) and its determinant

$$\begin{aligned} \varSigma ^{-1} = \frac{1}{|\varSigma |}\left( \begin{array}{rr} \sigma _2 &{} \quad -\rho \\ - \rho &{}\quad \sigma _1 \end{array} \right) \equiv \left( \begin{array}{cc} a &{}\quad b \\ b &{}\quad c \end{array} \right) , \quad |\varSigma ^{-1}| = ac-b^2 = \frac{1}{|\varSigma |}. \end{aligned}$$

If \(m+n\) is odd, the moments vanish due to the symmetry

$$\begin{aligned} \mathrm {m}_{mn}^{(f_{N})} = 0. \end{aligned}$$

For \(m+n\) even we have

$$\begin{aligned} \mathrm {m}_{mn}^{(f_{N})}&= \frac{1}{2\pi \sqrt{|\varSigma |}} \iint \limits _{{\mathbb {R}}^2} x^m y^n \mathrm {e}^{-\frac{1}{2}(ax^2+2bxy+cy^2)} \mathrm {\,d}x \mathrm {\,d}y \\&= \frac{1}{2\pi \sqrt{|\varSigma |}} \iint \limits _{{\mathbb {R}}^2} x^m \mathrm {e}^{-\frac{1}{2}x^2\left( a-\frac{b^2}{c}\right) } y^n \mathrm {e}^{-\frac{1}{2}\left( y+\frac{b}{c}x\right) ^2c} \mathrm {\,d}x \mathrm {\,d}y =\\&= \left| \begin{array}{rl} y+\frac{b}{c}x &{} = u \\ x &{} = v \end{array} \right| = \frac{1}{2\pi \sqrt{|\varSigma |}} \iint \limits _{{\mathbb {R}}^2} v^m \mathrm {e}^{-\frac{1}{2}v^2\left( a-\frac{b^2}{c}\right) } \left( u-\frac{b}{c}v\right) ^n \mathrm {e}^{-\frac{1}{2}u^2c}\mathrm {\,d}u \mathrm {\,d}v . \end{aligned}$$

We can separate the integrals and use the formula for 1D moments of Gaussian function:

$$\begin{aligned}&= \frac{1}{2\pi \sqrt{|\varSigma |}} \sum _{k=0}^{n} \left( {\begin{array}{c}n\\ k\end{array}}\right) \left( -\frac{b}{c}\right) ^{n-k} \int \limits _{\mathbb {R}}u^k \mathrm {e}^{-\frac{1}{2}u^2c} \mathrm {\,d}u \int \limits _{\mathbb {R}}v^{m+n-k} \mathrm {e}^{-\frac{1}{2}v^2\left( a-\frac{b^2}{c}\right) } \mathrm {\,d}v \nonumber \\&= \frac{1}{\sqrt{|\varSigma |}} \sum _{\begin{array}{c} k=0,\\ k \ \mathrm {even} \end{array}}^{n} \left( {\begin{array}{c}n\\ k\end{array}}\right) \left( \frac{-b}{c}\right) ^{n-k} \left( \frac{1}{{a-\frac{b^2}{c}}}\right) ^{\frac{m+n-k+1}{2}} (m+n-k-1)!! \left( \frac{1}{{c}}\right) ^{\frac{k+1}{2}} (k-1)!! \nonumber \\&= \sum _{\begin{array}{c} k=0,\\ k \ \mathrm {even} \end{array}}^{n} \left( {\begin{array}{c}n\\ k\end{array}}\right) \left( \frac{-b}{ |\varSigma ^{-1}| }\right) ^{n-k} \left( \frac{c}{ |\varSigma ^{-1}| }\right) ^{\frac{m-n}{2}} |\varSigma |^{k/2} (m+n-k-1)!! (k-1)!! \nonumber \\&= \sum _{i=0}^{\lfloor \frac{n}{2}\rfloor } \left( {\begin{array}{c}n\\ 2i\end{array}}\right) \rho ^{n-2i} \sigma _1^{\frac{m-n}{2}} \left( \sigma _1\sigma _2-\rho ^2\right) ^{i} (m+n-2i-1)!! (2i-1)!! \nonumber \\&= \sum _{i=0}^{\lfloor \frac{n}{2}\rfloor } \sum _{j=0}^{i} (-1)^{i-j} \left( {\begin{array}{c}n\\ 2i\end{array}}\right) \left( {\begin{array}{c}i\\ k\end{array}}\right) (m+n-2i-1)!! (2i-1)!! \rho ^{n-2j} \sigma _1^{\frac{m-n}{2}+j} \sigma _2^{j}. \end{aligned}$$
(24)

We may reduce the quadratic form in the exponent to a sum of squares in the following way

$$\begin{aligned} \frac{1}{2\pi \sqrt{|\varSigma |}}\iint \limits _{{\mathbb {R}}^2} y^n \mathrm {e}^{-\frac{1}{2}y^2\left( c-\frac{b^2}{a}\right) } x^m \mathrm {e}^{-\frac{1}{2}\left( x+\frac{b}{a}y\right) ^2a}\mathrm {\,d}x \mathrm {\,d}y. \end{aligned}$$

Then using the substitution

$$\begin{aligned} \begin{array}{rl} x+\frac{b}{a}y &{}= u \\ y &{} = v \end{array} \end{aligned}$$

another formula for moments of bivariate Gaussian distribution is obtained

$$\begin{aligned} \mathrm {m}_{mn}^{(f_{N})} = \sum _{i=0}^{\lfloor \frac{m}{2}\rfloor }\sum _{j=0}^{i}(-1)^{i-j}\left( {\begin{array}{c}m\\ 2i\end{array}}\right) \left( {\begin{array}{c}i\\ j\end{array}}\right) (m+n-2i-1)!! (2i-1)!!\rho ^{m-2j}\sigma _1^{j}\sigma _2^{\frac{n-m}{2}+j}. \end{aligned}$$
(25)

When we compare these two results, it is obvious that the coefficients of negative powers must be zero. Hence, moments are composed of positive powers of the elements of covariance matrix only

$$\begin{aligned} \mathrm {m}_{mn}^{(f_{N})} = \mathop {\sum _{i=0}^{\lfloor \frac{m}{2}\rfloor }\sum _{j=0}^{i}}_{\begin{array}{c} j\ge \frac{m-n}{2} \end{array}}(-1)^{i-j}\left( {\begin{array}{c}m\\ 2i\end{array}}\right) \left( {\begin{array}{c}i\\ j\end{array}}\right) (m+n-2i-1)!!\rho ^{m-2j}\sigma _1^{j} \sigma _2^{\frac{n-m}{2}+j}. \end{aligned}$$
(26)

Proof of the equivalence

Let us show that Formulas (22) and (23) for convolution invariants are equivalent. The proof is done by induction.

Proof

\(A_{00} = 1\) in Formula (22) as well as in Formula (23).

Let us assume \((m,n),\, m+n>0\). From the induction assumption, the explicit formula is valid for all indices (pq), where \(p\le m, \ q \le n\) and \((p,q)\ne (m,n)\).

$$\begin{aligned} A_{mn}&= m_{mn} - \mathop {\sum _{l=0}^{m} \sum _{k=0}^{n}}_{\begin{array}{c} l+k\ne 0,\\ l+k \ \mathrm {even} \end{array}} \left( {\begin{array}{c}m\\ l\end{array}}\right) \left( {\begin{array}{c}n\\ k\end{array}}\right) \mathop {\sum _{i=0}^{\lfloor \frac{k}{2} \rfloor } \sum _{j=0}^{i}}_{\begin{array}{c} j\ge \frac{k-l}{2} \end{array}} (-1)^{i-j} \left( {\begin{array}{c}k\\ 2i\end{array}}\right) \left( {\begin{array}{c}i\\ j\end{array}}\right) (l+k-2i-1)!! (2i-1)!! \\&\quad \cdot m_{11}^{k-2j} m_{20}^{\frac{l-k}{2}+j} m_{02}^{j}A_{m-l,n-k} = \\&= m_{mn} - \mathop {\sum _{l=0}^{m} \sum _{k=0}^{n}}_{\begin{array}{c} l+k\ne 0,\\ l+k \ \mathrm {even} \end{array}} \left( {\begin{array}{c}m\\ l\end{array}}\right) \left( {\begin{array}{c}n\\ k\end{array}}\right) \mathop {\sum _{i=0}^{\lfloor \frac{k}{2} \rfloor } \sum _{j=0}^{i}}_{\begin{array}{c} j \ge \frac{k-l}{2} \end{array}} (-1)^{i-j} \left( {\begin{array}{c}k\\ 2i\end{array}}\right) \left( {\begin{array}{c}i\\ j\end{array}}\right) \\&\quad \cdot (l+k-2i-1)!! (2i-1)!!\, m_{11}^{k-2j} m_{20}^{\frac{l-k}{2}+j} m_{02}^{j} \\&\quad \cdot \mathop {\sum _{s=0}^{n-k} \sum _{t=0}^{m-l}}_{ s+t \ \mathrm {even}} (-1)^{\frac{s+t}{2}} \left( {\begin{array}{c}m-l\\ t\end{array}}\right) \left( {\begin{array}{c}n-k\\ s\end{array}}\right) \mathop {\sum _{\alpha =0}^{\lfloor \frac{s}{2} \rfloor } \sum _{\beta =0}^{\alpha }}_{\begin{array}{c} \beta \ge \frac{s-t}{2} \end{array}} (-1)^{\alpha -\beta } \left( {\begin{array}{c}s\\ 2\alpha \end{array}}\right) \left( {\begin{array}{c}\alpha \\ \beta \end{array}}\right) \\&\quad (2\alpha -1)!! (s+t-2\alpha -1)!! \\&\quad \cdot m_{11}^{s-2\beta } m_{20}^{\frac{t-s}{2}+\beta } m_{02}^{\beta }m_{m-l-t,n-k-s} = \\&= m_{mn} - \mathop {\sum _{l = 0}^{m} \sum _{k=0}^{n}}_{\begin{array}{c} l+k \ne 0,\\ l+k \ \mathrm {even} \end{array}} \frac{m!}{l!(m-l)!} \frac{n!}{k!(n-k)!} \mathop {\sum _{i = 0}^{\lfloor \frac{k}{2} \rfloor } \sum _{j=0}^{i}}_{\begin{array}{c} j \ge \frac{k-l}{2} \end{array}} (-1)^{i-j} \left( {\begin{array}{c}k\\ 2i\end{array}}\right) \left( {\begin{array}{c}i\\ j\end{array}}\right) (2i-1)!!\\&\quad \cdot (l+k-2i-1)!! \\&\quad \cdot m_{11}^{k-2j} m_{20}^{\frac{l-k}{2}+j} m_{02}^{j} \mathop {\sum _{s = 0}^{n-k} \sum _{t = 0}^{m-l}}_{ s+t \ \mathrm {even}} (-1)^{\frac{s+t}{2}} \frac{(m-l)!}{t!(m-l-t)!} \frac{(n-k)!}{s!(n-k-s)!} \\&\quad \cdot \mathop {\sum _{\alpha =0}^{\lfloor \frac{s}{2}\rfloor }\sum _{\beta =0}^{\alpha }}_{\begin{array}{c} \beta \ge \frac{s-t}{2} \end{array}}(-1)^{\alpha -\beta }\left( {\begin{array}{c}s\\ 2\alpha \end{array}}\right) \left( {\begin{array}{c}\alpha \\ \beta \end{array}}\right) (2\alpha -1)!!(s+t-2\alpha -1)!! m_{11}^{s-2\beta } m_{20}^{\frac{t-s}{2}+\beta }\\&\quad \cdot m_{02}^{\beta }m_{m-l-t,n-k-s} \\ \end{aligned}$$
$$\begin{aligned}&= \left| \begin{array}{c} p = k + s \\ q = t + l \end{array}\right| = m_{mn} - \mathop {\sum _{l = 0}^{m} \sum _{k=0}^{n}}_{\begin{array}{c} l+k \ne 0,\\ l + k \ \mathrm {even} \end{array}} \frac{m!}{l!} \frac{n!}{k!} \mathop {\sum _{i=0}^{\lfloor \frac{k}{2} \rfloor } \sum _{j=0}^{i}}_{\begin{array}{c} j\ge \frac{k-l}{2} \end{array}} (-1)^{i-j} \left( {\begin{array}{c}k\\ 2i\end{array}}\right) \left( {\begin{array}{c}i\\ j\end{array}}\right) \\&\quad \cdot (l+k-2i-1)!! (2i-1)!! \\&\quad \cdot m_{11}^{k-2j} m_{20}^{\frac{l-k}{2}+j} m_{02}^{j} \mathop {\sum _{p=k}^{n}\sum _{q=l}^{m}}_{ p+q \ \mathrm {even}} \frac{(-1)^{\frac{p+q-k-l}{2}}}{(q-l)!(m-q)!} \frac{1}{(p-k)!(n-p)!} \mathop {\sum _{\alpha = 0}^{\lfloor \frac{p-k}{2} \rfloor } \sum _{\beta =0}^{\alpha }}_{\begin{array}{c} \beta \ge \frac{p-q+l-k}{2} \end{array}} (-1)^{\alpha -\beta } \\&\quad \cdot \left( {\begin{array}{c}p-k\\ 2\alpha \end{array}}\right) \left( {\begin{array}{c}\alpha \\ \beta \end{array}}\right) (2\alpha -1)!!\\&\quad \cdot (p+q-k-l-2\alpha -1)!! \, m_{11}^{p-k-2\beta } m_{20}^{\frac{q-p+k-l}{2}+\beta } m_{02}^{\beta }m_{m-q,n-p} = \\&= m_{mn} - \mathop {\sum _{l = 0}^{m} \sum _{k=0}^{n}}_{\begin{array}{c} l+k \ne 0,\\ l+k \ \mathrm {even} \end{array}} \mathop {\sum _{p = k}^{n} \sum _{q = l}^{m}}_{ p+q \ \mathrm {even}} \left( {\begin{array}{c}m\\ q\end{array}}\right) \left( {\begin{array}{c}q\\ l\end{array}}\right) \left( {\begin{array}{c}n\\ p\end{array}}\right) \left( {\begin{array}{c}p\\ k\end{array}}\right) (-1)^{\frac{p+q-k-l}{2}} m_{m-q,n-p}\\&\quad \cdot \mathop {\sum _{i = 0}^{\lfloor \frac{k}{2} \rfloor } \sum _{j = 0}^{i}}_{\begin{array}{c} j \ge \frac{k-l}{2} \end{array}} (-1)^{i-j} \left( {\begin{array}{c}k\\ 2i\end{array}}\right) \left( {\begin{array}{c}i\\ j\end{array}}\right) \\&\quad \cdot (l+k-2i-1)!! (2i-1)!! \mathop {\sum _{\alpha = 0}^{\lfloor \frac{p-k}{2} \rfloor } \sum _{\beta = 0}^{\alpha }}_{\begin{array}{c} \beta \ge \frac{p-q+l-k}{2} \end{array}} (-1)^{\alpha -\beta } \left( {\begin{array}{c}p-k\\ 2\alpha \end{array}}\right) \left( {\begin{array}{c}\alpha \\ \beta \end{array}}\right) \\&\quad \cdot (2\alpha -1)!! (p+q-k-l-2\alpha -1)!! \\&\quad \cdot m_{11}^{p-2j-2\beta } m_{20}^{\frac{q-p}{2}+j+\beta } m_{02}^{j+\beta } = \\&= m_{mn} - \mathop {\sum _{p = 0}^{n} \sum _{k = 0}^{p} \sum _{q = 0}^{m} \sum _{l = 0}^{q}}_{\begin{array}{c} l + k \ne 0, p+q \ne 0\\ l+k \ \mathrm {even}, p+q \ \mathrm {even} \end{array}} \left( {\begin{array}{c}m\\ q\end{array}}\right) \left( {\begin{array}{c}q\\ l\end{array}}\right) \left( {\begin{array}{c}n\\ p\end{array}}\right) \left( {\begin{array}{c}p\\ k\end{array}}\right) (-1)^{\frac{p+q-k-l}{2}} m_{m-q,n-p}\\&\quad \cdot \mathop {\sum _{i=0}^{\lfloor \frac{k}{2}\rfloor }\sum _{j=0}^{i}}_{\begin{array}{c} j\ge \frac{k-l}{2} \end{array}}(-1)^{i-j} \left( {\begin{array}{c}k\\ 2i\end{array}}\right) \left( {\begin{array}{c}i\\ j\end{array}}\right) \\&\quad \cdot (l+k-2i-1)!! (2i-1)!! \mathop {\sum _{\alpha = 0}^{\lfloor \frac{p-k}{2} \rfloor } \sum _{\beta = 0}^{\alpha }}_{\begin{array}{c} \beta \ge \frac{p-q+l-k}{2} \end{array}} (-1)^{\alpha -\beta } \left( {\begin{array}{c}p-k\\ 2\alpha \end{array}}\right) \left( {\begin{array}{c}\alpha \\ \beta \end{array}}\right) (2\alpha -1)!!\\&\quad \cdot (p+q-k-l-2\alpha -1)!! \\&\quad \cdot m_{11}^{p-2j-2\beta } m_{20}^{\frac{q-p}{2}+j+\beta } m_{02}^{j+\beta } = \\ \end{aligned}$$
$$\begin{aligned}&= m_{mn} - \mathop {\sum _{p = 0}^{n} \sum _{q = 0}^{m}}_{\begin{array}{c} p+q \ne 0,\\ p+q \ \mathrm {even} \end{array}} (-1)^{\frac{p+q}{2}} \left( {\begin{array}{c}m\\ q\end{array}}\right) \left( {\begin{array}{c}n\\ p\end{array}}\right) m_{m-q,n-p} \mathop {\sum _{k = 0}^{p} \sum _{l = 0}^{q}}_{\begin{array}{c} k+l \ \mathrm {even}\\ k+l \ne 0 \end{array}} (-1)^{\frac{k+l}{2}} \left( {\begin{array}{c}q\\ l\end{array}}\right) \left( {\begin{array}{c}p\\ k\end{array}}\right) \\&\quad \cdot \mathop {\sum _{i = 0}^{\lfloor \frac{k}{2} \rfloor } \sum _{j=0}^{i}}_{\begin{array}{c} j \ge \frac{k-l}{2} \end{array}} (-1)^{i-j} \left( {\begin{array}{c}k\\ 2i\end{array}}\right) \left( {\begin{array}{c}i\\ j\end{array}}\right) \\&\quad \cdot (2i-1)!! (l+k-2i-1)!! m_{11}^{k-2j} m_{20}^{\frac{l-k}{2}+j} m_{02}^{j} \mathop {\sum _{\alpha = 0}^{\lfloor \frac{p-k}{2} \rfloor } \sum _{\beta = 0}^{\alpha }}_{\begin{array}{c} \beta \ge \frac{p-q-k+l}{2} \end{array}} (-1)^{\alpha -\beta } \left( {\begin{array}{c}p-k\\ 2\alpha \end{array}}\right) \left( {\begin{array}{c}\alpha \\ \beta \end{array}}\right) \\&\quad \cdot (2\alpha -1)!! (p+q-k-l-2\alpha -1)!! \, m_{11}^{p-k-2\beta } m_{20}^{\frac{q-p+k-l}{2}+\beta } m_{02}^{\beta } = \\&= m_{mn} - \mathop {\sum _{p = 0}^{n} \sum _{q = 0}^{m}}_{\begin{array}{c} p+q \ne 0,\\ p+q \ \mathrm {even} \end{array}} (-1)^{\frac{p+q}{2}} \left( {\begin{array}{c}m\\ q\end{array}}\right) \left( {\begin{array}{c}n\\ p\end{array}}\right) m_{m-q,n-p} \\&\quad \cdot \Bigg [ \mathop {\sum _{ k =0}^{p} \sum _{l = 0}^{q}}_{\begin{array}{c} k+l \ \mathrm {even}\\ \end{array}} (-1)^{\frac{k+l}{2}} \left( {\begin{array}{c}p\\ k\end{array}}\right) \left( {\begin{array}{c}q\\ l\end{array}}\right) m_{l,k}^{(G)} m_{q-l,p-k}^{(G)} \\&\quad - \mathop {\sum _{\alpha = 0}^{\lfloor \frac{p}{2} \rfloor } \sum _{\beta = 0}^{\alpha }}_{\begin{array}{c} \beta \ge \frac{p-q}{2} \end{array}} (-1)^{\alpha -\beta } \left( {\begin{array}{c}p\\ 2\alpha \end{array}}\right) \left( {\begin{array}{c}\alpha \\ \beta \end{array}}\right) (2\alpha - 1)!! (p + q - 2\alpha - 1)!! \, m_{11}^{p-2\beta } m_{20}^{\frac{q-p}{2}+\beta } m_{02}^{\beta } \Bigg ] = \\&= \mathop {\sum _{l = 0}^{m} \sum _{k = 0}^{n}}_{ l+k \ \mathrm {even}} (-1)^{\frac{k+l}{2}} \left( {\begin{array}{c}m\\ l\end{array}}\right) \left( {\begin{array}{c}n\\ k\end{array}}\right) \mathop {\sum _{i = 0}^{\lfloor \frac{k}{2} \rfloor } \sum _{j = 0}^{i}}_{\begin{array}{c} j \ge \frac{k-l}{2} \end{array}} (-1)^{i-j} \left( {\begin{array}{c}k\\ 2i\end{array}}\right) \left( {\begin{array}{c}i\\ j\end{array}}\right) (l+k-2i-1)!! (2i-1)!! \\&\quad \cdot m_{11}^{k-2j} m_{20}^{\frac{l-k}{2}+j} m_{02}^{j}m_{m-l,n-k} . \end{aligned}$$

It remains to prove that for \(p+q>0,\, p+q \) even, it holds

$$\begin{aligned} \mathop {\sum _{k = 0}^{p} \sum _{l = 0}^{q}}_{\begin{array}{c} k+l \ \mathrm {even} \end{array}} (-1)^{\frac{k+l}{2}} \left( {\begin{array}{c}p\\ k\end{array}}\right) \left( {\begin{array}{c}q\\ l\end{array}}\right) m_{l,k}^{(f_{N})} m_{q-l,p-k}^{(f_{N})} = 0. \end{aligned}$$
(27)

For \(\frac{p+q}{2}\) being odd, the proof is trivial because every combination is present twice with the opposite signs. Thus, all terms vanish.

$$\begin{aligned} k = a, l= b\Rightarrow & {} (-1)^{\frac{a+b}{2}}\left( {\begin{array}{c}p\\ a\end{array}}\right) \left( {\begin{array}{c}q\\ b\end{array}}\right) m_{b,a}m_{q-b,p-a} \nonumber \\ k = p-a, l= q-b\Rightarrow & {} (-1)^{\frac{p+q-(a+b)}{2}}\left( {\begin{array}{c}p\\ p-a\end{array}}\right) \left( {\begin{array}{c}q\\ q-b\end{array}}\right) m_{q-b,p-a}m_{b,a} = \\&\quad -\left[ (-1)^{\frac{a+b}{2}}\left( {\begin{array}{c}p\\ a\end{array}}\right) \left( {\begin{array}{c}q\\ b\end{array}}\right) m_{b,a}m_{q-b,p-a}\right] \end{aligned}$$

For \(\frac{p+q}{2}\) even we have

$$\begin{aligned}&\mathop {\sum _{k = 0}^{p} \sum _{l = 0}^{q}}_{\begin{array}{c} k+l \ \mathrm {even} \end{array}} (-1)^{\frac{k+l}{2}} \left( {\begin{array}{c}p\\ k\end{array}}\right) \left( {\begin{array}{c}q\\ l\end{array}}\right) m_{l,k}^{(f_{N})} m_{q-l,p-k}^{(f_{N})} = \nonumber \\&\quad = \mathop {\sum _{k = 0}^{p} \sum _{l = 0}^{q}}_{\begin{array}{c} k+l \ \mathrm {even} \end{array}} (-1)^{\frac{k+l}{2}} \left( {\begin{array}{c}p\\ k\end{array}}\right) \left( {\begin{array}{c}q\\ l\end{array}}\right) \mathop {\sum _{i = 0}^{\lfloor \frac{k}{2} \rfloor } \sum _{t = 0}^{i}}_{\begin{array}{c} t \ge \frac{k-l}{2} \end{array}} (-1)^{i-t} \left( {\begin{array}{c}k\\ 2i\end{array}}\right) \left( {\begin{array}{c}i\\ t\end{array}}\right) (l+k-2i-1)!!\nonumber \\&\qquad \cdot (2i-1)!! \, m_{11}^{k-2t} m_{20}^{\frac{l-k}{2}+t} m_{02}^{t}\nonumber \\&\qquad \cdot \mathop {\sum _{s = 0}^{\lfloor \frac{p-k}{2} \rfloor } \sum _{r = 0}^{s}}_{\begin{array}{c} r \ge \frac{p-q-k+l}{2} \end{array}} (-1)^{s-r} \left( {\begin{array}{c}p-k\\ 2s\end{array}}\right) \left( {\begin{array}{c}s\\ r\end{array}}\right) (p+q-l-k-2s-1)!!\nonumber \\&\qquad \cdot (2s-1)!! \, m_{11}^{p-k-2r} m_{20}^{\frac{q-l-p+k}{2}+r} m_{02}^{r} = \nonumber \\&\qquad = \mathop {\sum _{k = 0}^{p} \sum _{l = 0}^{q} \sum _{i = 0}^{\lfloor \frac{k}{2} \rfloor } \sum _{t = 0}^{i} \sum _{s = 0}^{\lfloor \frac{p-k}{2} \rfloor } \sum _{r = 0}^{s}}_{\begin{array}{c} k+l \ \mathrm {even}\ \wedge \ t \ge \frac{k-l}{2}\ \wedge \ r \ge \frac{p-q-k+l}{2} \end{array}} \left( {\begin{array}{c}p\\ k\end{array}}\right) \left( {\begin{array}{c}q\\ l\end{array}}\right) \left( {\begin{array}{c}k\\ 2i\end{array}}\right) \left( {\begin{array}{c}i\\ t\end{array}}\right) \left( {\begin{array}{c}p-k\\ 2s\end{array}}\right) \left( {\begin{array}{c}s\\ r\end{array}}\right) (2i-1)!! (2s-1)!! \nonumber \\&\qquad \cdot (l+k-2i-1)!! (p+q-l-k-2s-1)!! (-1)^{\frac{k+l}{2} +i-t+s-r}\nonumber \\&\quad \quad \cdot m_{11}^{p-2t-2r} m_{20}^{\frac{q-p}{2} +r+t} m_{02}^{r+t} \nonumber \\&\quad = \mathop {\sum _{k = 0}^{p} \sum _{l = 0}^{q} \sum _{t = 0}^{\lfloor \frac{k}{2} \rfloor } \sum _{i = t}^{\lfloor \frac{k}{2} \rfloor } \sum _{s = 0}^{\lfloor \frac{p-k}{2} \rfloor } \sum _{r = 0}^{s}}_{\begin{array}{c} k+l \ \mathrm {even}\ \wedge \ t \ge \frac{k-l}{2} \ \wedge \ r \ge \frac{p-q-k+l}{2} \end{array}} \left( {\begin{array}{c}p\\ k\end{array}}\right) \left( {\begin{array}{c}q\\ l\end{array}}\right) \left( {\begin{array}{c}k\\ 2i\end{array}}\right) \left( {\begin{array}{c}i\\ t\end{array}}\right) \left( {\begin{array}{c}p-k\\ 2s\end{array}}\right) \left( {\begin{array}{c}s\\ r\end{array}}\right) (2i-1)!! (2s-1)!!\nonumber \\&\quad \quad \cdot (l+k-2i-1)!! (p+q-l-k-2s-1)!! (-1)^{\frac{k+l}{2} +i-t+s-r} m_{11}^{p-2t-2r} m_{20}^{\frac{q-p}{2} +r+t} m_{02}^{r+t}\nonumber \\ \end{aligned}$$
$$\begin{aligned}&\quad =\left| \begin{matrix} k = 0 : p,\ t = 0: \lfloor \frac{k}{2} \rfloor \Rightarrow \\ t = 0 : \lfloor \frac{p}{2} \rfloor , \ k = 2t : p \end{matrix} \right| \left. \begin{matrix} s = 0 : \lfloor \frac{p-k}{2} \rfloor ,\ r = 0 : s \Rightarrow \\ r = 0 : \lfloor \frac{p-k}{2} \rfloor ,\ s = r : \lfloor \frac{p-k}{2} \rfloor \end{matrix} \right| =\nonumber \\&\quad = \sum _{t = 0}^{\lfloor \frac{p}{2} \rfloor } \mathop {\sum _{k = 2t}^{p} \sum _{l = 0}^{q} \sum _{i = t}^{\lfloor \frac{k}{2} \rfloor } \sum _{r = 0}^{\lfloor \frac{p-k}{2} \rfloor } \sum _{s = r}^{\lfloor \frac{p-k}{2} \rfloor }}_{\begin{array}{c} k+l \ \mathrm {even}\ \wedge \ t \ge \frac{k-l}{2} \ \wedge \ r \ge \frac{p-q-k+l}{2} \end{array}} \left( {\begin{array}{c}p\\ k\end{array}}\right) \left( {\begin{array}{c}q\\ l\end{array}}\right) \left( {\begin{array}{c}k\\ 2i\end{array}}\right) \left( {\begin{array}{c}i\\ t\end{array}}\right) \left( {\begin{array}{c}p-k\\ 2s\end{array}}\right) \left( {\begin{array}{c}s\\ r\end{array}}\right) (2i-1)!! (2s-1)!! \nonumber \\&\qquad \cdot (l+k-2i-1)!! (p+q-l-k-2s-1)!! (-1)^{\frac{k+l}{2} +i-t+s-r} m_{11}^{p-2t-2r}\nonumber \\&\qquad \cdot m_{20}^{\frac{q-p}{2} +r+t} m_{02}^{r+t} \nonumber \\&\quad = \left| \begin{matrix} k = 2t : p,\ r = 0 : \lfloor \frac{p-k}{2} \rfloor \Rightarrow \\ r = 0 : \lfloor \frac{p-2t}{2} \rfloor ,\ k = 2t : p-2r \end{matrix} \right| =\nonumber \\&\quad = \mathop {\sum _{t = 0}^{\lfloor \frac{p}{2} \rfloor } \sum _{r = 0}^{\lfloor \frac{p-2t}{2} \rfloor } \sum _{k = 2t}^{p-2r} \sum _{l = 0}^{q} \sum _{i = t}^{\lfloor \frac{k}{2} \rfloor } \sum _{s = r}^{\lfloor \frac{p-k}{2} \rfloor }}_{\begin{array}{c} k+l \ \mathrm {even} \ \wedge \ t \ge \frac{k-l}{2} \ \wedge \ r \ge \frac{p-q-k+l}{2} \end{array}} \left( {\begin{array}{c}p\\ k\end{array}}\right) \left( {\begin{array}{c}q\\ l\end{array}}\right) \left( {\begin{array}{c}k\\ 2i\end{array}}\right) \left( {\begin{array}{c}i\\ t\end{array}}\right) \left( {\begin{array}{c}p-k\\ 2s\end{array}}\right) \left( {\begin{array}{c}s\\ r\end{array}}\right) (2i-1)!! (2s-1)!! \nonumber \\&\quad \cdot (l+k-2i-1)!! (p+q-l-k-2s-1)!! (-1)^{\frac{k+l}{2} +i-t+s-r} m_{11}^{p-2t-2r}\nonumber \\&\quad \quad \cdot m_{20}^{\frac{q-p}{2}+r+t} m_{02}^{r+t}\nonumber \\&= \sum _{t = 0}^{\lfloor \frac{p}{2} \rfloor } \sum _{r = 0}^{\lfloor \frac{p-2t}{2} \rfloor } m_{11}^{p-2t-2r} m_{20}^{\frac{q-p}{2}+r+t} m_{02}^{r+t} \mathop {\sum _{k = 2t}^{p-2r} \sum _{l = 0}^{q} \sum _{i = t}^{\lfloor \frac{k}{2} \rfloor } \sum _{s = r}^{\lfloor \frac{p-k}{2} \rfloor }}_{\begin{array}{c} k+l \ \mathrm {even} \ \wedge \ t \ge \frac{k-l}{2} \ \wedge \ r \ge \frac{p-q-k+l}{2} \end{array}} (-1)^{\frac{k+l}{2} +i-t+s-r} \left( {\begin{array}{c}p\\ k\end{array}}\right) \left( {\begin{array}{c}q\\ l\end{array}}\right) \nonumber \\&\quad \quad \cdot \left( {\begin{array}{c}k\\ 2i\end{array}}\right) \left( {\begin{array}{c}i\\ t\end{array}}\right) \left( {\begin{array}{c}p-k\\ 2s\end{array}}\right) \left( {\begin{array}{c}s\\ r\end{array}}\right) (2i-1)!! (2s-1)!! (l{+}k{-}2i{-}1)!! (p+q-l-k-2s-1)!!\nonumber \\&\quad = \left| \begin{matrix} t + r = N \Rightarrow r = N - t \\ t = 0 : \lfloor \frac{p}{2} \rfloor \Rightarrow \\ N = t : \lfloor \frac{p}{2} \rfloor \end{matrix} \right| = \nonumber \\ \end{aligned}$$
$$\begin{aligned}&\quad = \sum _{t = 0}^{\lfloor \frac{p}{2} \rfloor } \sum _{N = t}^{\lfloor \frac{p}{2} \rfloor } m_{11}^{p-2N} m_{20}^{\frac{q{-}p}{2} {+}N} m_{02}^{N} \mathop {\sum _{k = 2t}^{p-2N+2t} \sum _{l = 0}^{q} \sum _{i = t}^{\lfloor \frac{k}{2} \rfloor } \sum _{s = N-t}^{\lfloor \frac{p-k}{2} \rfloor }}_{\begin{array}{c} k+l \ \mathrm {even} \wedge N-\frac{p-k-q+l}{2} {\ge } t \ge \frac{k-l}{2} \end{array}} ({-}1)^{\frac{k+l}{2} +i+s-N} \left( {\begin{array}{c}p\\ k\end{array}}\right) \left( {\begin{array}{c}q\\ l\end{array}}\right) \left( {\begin{array}{c}k\\ 2i\end{array}}\right) \left( {\begin{array}{c}i\\ t\end{array}}\right) \nonumber \\&\quad \quad \cdot \left( {\begin{array}{c}p-k\\ 2s\end{array}}\right) \left( {\begin{array}{c}s\\ N-t\end{array}}\right) (2i-1)!! (2s-1)!! (l+k-2i-1)!! (p+q-l-k-2s-1)!! \nonumber \\&\quad = \left| \begin{matrix} t = 0 : \lfloor \frac{p}{2} \rfloor , N = t : \lfloor \frac{p}{2} \rfloor \Rightarrow \\ N = 0 : \lfloor \frac{p}{2} \rfloor , t = 0 : N \end{matrix} \right| = \nonumber \\&\quad = \sum _{N = 0}^{\lfloor \frac{p}{2} \rfloor } \sum _{t = 0}^{N} m_{11}^{p-2N} m_{20}^{\frac{q-p}{2}+N} m_{02}^{N} \mathop {\sum _{k = 2t}^{p-2N+2t} \sum _{l = 0}^{q} \sum _{i = t}^{\lfloor \frac{k}{2} \rfloor } \sum _{s = N-t}^{\lfloor \frac{p-k}{2} \rfloor }}_{\begin{array}{c} k+l \ \mathrm {even} \ \wedge \ N-\frac{p-k-q+l}{2} \ge t \ge \frac{k-l}{2} \end{array}} (-1)^{\frac{k+l}{2} +i+s-N} \left( {\begin{array}{c}p\\ k\end{array}}\right) \left( {\begin{array}{c}q\\ l\end{array}}\right) \left( {\begin{array}{c}i\\ t\end{array}}\right) \nonumber \\&\qquad \cdot \left( {\begin{array}{c}k\\ 2i\end{array}}\right) \left( {\begin{array}{c}p-k\\ 2s\end{array}}\right) \left( {\begin{array}{c}s\\ N-t\end{array}}\right) (2i-1)!! (2s-1)!! (l{+}k-2i{-}1)!! (p+q{-}l{-}k{-}2s-1)!!= \nonumber \\&= \left| \begin{matrix} k - 2t = m \Rightarrow k = m + 2t \\ k = 2t : p - 2N + 2t \Rightarrow \\ m = 0 : p - 2N \end{matrix} \right| =\nonumber \\&= \sum _{N = 0}^{\lfloor \frac{p}{2} \rfloor } m_{11}^{p-2N} m_{20}^{\frac{q-p}{2} +N} m_{02}^{N} \mathop {\sum _{t = 0}^{N} \sum _{m = 0}^{p-2N} \sum _{l = 0}^{q} \sum _{i = t}^{\lfloor \frac{m+2t}{2} \rfloor } \sum _{s = N-t}^{\lfloor \frac{p-m-2t}{2} \rfloor }}_{\begin{array}{c} m+l \ \mathrm {even} \ \wedge \ N-\frac{p-q}{2} \ge \frac{l-m}{2} \ge 0 \end{array}} (-1)^{\frac{m+l}{2} +t+i+s-N}\nonumber \\&\quad \cdot \left( {\begin{array}{c}p\\ m+2t\end{array}}\right) \left( {\begin{array}{c}q\\ l\end{array}}\right) \left( {\begin{array}{c}m+2t\\ 2i\end{array}}\right) \left( {\begin{array}{c}i\\ t\end{array}}\right) \nonumber \\&\quad \cdot \left( {\begin{array}{c}s\\ N-t\end{array}}\right) \left( {\begin{array}{c}p-m-2t\\ 2s\end{array}}\right) (2i-1)!! (2s-1)!!\nonumber \\&\quad \cdot (l+m + 2t-2i-1)!! (p+q-l-m - 2t-2s-1)!! \nonumber \\&= \left| \begin{matrix} i - t {=} j \Rightarrow i = j + t \\ i {=} t : \lfloor \frac{m+2t}{2} \rfloor \Rightarrow \\ j {=} 0 : \lfloor \frac{m}{2} \rfloor \end{matrix} \right| = \nonumber \\ \end{aligned}$$
$$\begin{aligned}&= \sum _{N = 0}^{\lfloor \frac{p}{2} \rfloor } m_{11}^{p-2N} m_{20}^{\frac{q-p}{2} +N} m_{02}^{N} \mathop {\sum _{t = 0}^{N} \sum _{m = 0}^{p-2N} \sum _{l = 0}^{q} \sum _{j = 0}^{\lfloor \frac{m}{2} \rfloor } \sum _{s = N-t}^{\lfloor \frac{p-m-2t}{2} \rfloor }}_{\begin{array}{c} m+l \ \mathrm {even} \ \wedge \ N-\frac{p-q}{2} \ge \frac{l-m}{2} \ge 0 \end{array}} (-1)^{\frac{m+l}{2} +j+2t+s-N}\nonumber \\&\quad \cdot \left( {\begin{array}{c}p\\ m+2t\end{array}}\right) \left( {\begin{array}{c}q\\ l\end{array}}\right) \left( {\begin{array}{c}m+2t\\ 2j+2t\end{array}}\right) \left( {\begin{array}{c}j+t\\ t\end{array}}\right) \nonumber \\&\quad \cdot \left( {\begin{array}{c}s\\ N-t\end{array}}\right) \left( {\begin{array}{c}p-m-2t\\ 2s\end{array}}\right) (2j+2t-1)!! (2s-1)!! (l+m -2j-1)!!\nonumber \\&\quad \cdot (p+q-l-m - 2t-2s-1)!! \nonumber \\&= \left| \begin{matrix} s - N + t = k \Rightarrow s = N - t + k \\ s = N - t : \lfloor \frac{p-2m-2t}{2} \rfloor \Rightarrow \\ k = 0 : \lfloor \frac{p-2m-2N}{2} \rfloor \end{matrix} \right| = \nonumber \\&= \sum _{N = 0}^{\lfloor \frac{p}{2} \rfloor } m_{11}^{p-2N} m_{20}^{\frac{q-p}{2} +N} m_{02}^{N} \mathop {\sum _{t = 0}^{N} \sum _{m = 0}^{p-2N} \sum _{l = 0}^{q} \sum _{j = 0}^{\lfloor \frac{m}{2} \rfloor } \sum _{k = 0}^{\lfloor \frac{p-m-2N}{2} \rfloor }}_{\begin{array}{c} m+l \ \mathrm {even} \ \wedge \ N-\frac{p-q}{2} \ge \frac{l-m}{2} \ge 0 \end{array}} (-1)^{\frac{m+l}{2} +j+k+t} \left( {\begin{array}{c}p\\ m+2t\end{array}}\right) \left( {\begin{array}{c}q\\ l\end{array}}\right) \nonumber \\&\quad \cdot \left( {\begin{array}{c}m+2t\\ 2j+2t\end{array}}\right) \left( {\begin{array}{c}j+t\\ t\end{array}}\right) \left( {\begin{array}{c}N-t+k\\ N-t\end{array}}\right) \left( {\begin{array}{c}p-m-2t\\ 2N-2t+2k\end{array}}\right) (2j+2t-1)!! (2N-2t+2k-1)!! \nonumber \\&\quad \cdot (l+m -2j-1)!! (p+q-l-m - 2N-2k-1)!! \nonumber \\&= \sum _{N = 0}^{\lfloor \frac{p}{2} \rfloor } m_{11}^{p-2N} m_{20}^{\frac{q-p}{2} +N} m_{02}^{N} \mathop {\sum _{t = 0}^{N} \sum _{m = 0}^{p-2N} \sum _{l = 0}^{q} \sum _{j = 0}^{\lfloor \frac{m}{2} \rfloor } \sum _{k = 0}^{\lfloor \frac{p-m-2N}{2} \rfloor }}_{\begin{array}{c} m+l \ \mathrm {even} \ \wedge \ N-\frac{p-q}{2} \ge \frac{l-m}{2} \ge 0 \end{array}} (-1)^{\frac{m+l}{2} +j+k+t} \left( {\begin{array}{c}q\\ l\end{array}}\right) p! \nonumber \\&\quad \cdot \frac{(2j+2t-1)!!}{(2j+2t)!(m-2j)!} \frac{(j+t)!}{t!j!} \frac{(N-t+k)!}{(N-t)!k!} \frac{(2N-2t+2k-1)!!}{(2N-2t+2k)!(p-m-2N-2k)!} \nonumber \\&\quad \cdot (l+m -2j-1)!! (p+q-l-m - 2N-2k-1)!! \nonumber \\&= \sum _{N = 0}^{\lfloor \frac{p}{2} \rfloor } m_{11}^{p-2N} m_{20}^{\frac{q-p}{2} +N} m_{02}^{N} \mathop {\sum _{t = 0}^{N} \sum _{m = 0}^{p-2N} \sum _{l = 0}^{q} \sum _{j = 0}^{\lfloor \frac{m}{2} \rfloor } \sum _{k = 0}^{\lfloor \frac{p-m-2N}{2} \rfloor }}_{\begin{array}{c} m+l \ \mathrm {even} \ \wedge \ N-\frac{p-q}{2} \ge \frac{l-m}{2} \ge 0 \end{array}} (-1)^{\frac{m+l}{2} +j+k+t} \left( {\begin{array}{c}q\\ l\end{array}}\right) p! \nonumber \\&\quad \cdot \frac{1}{(2j+2t)!!(m-2j)!} \frac{(j+t)!}{t!j!} \frac{(N-t+k)!}{(N-t)!k!} \frac{1}{(2N-2t+2k)!!(p-m-2N-2k)!} \end{aligned}$$
$$\begin{aligned}&\quad \cdot (l+m -2j-1)!! (p+q-l-m - 2N-2k-1)!! \nonumber \\&= \sum _{N = 0}^{\lfloor \frac{p}{2} \rfloor } m_{11}^{p-2N} m_{20}^{\frac{q-p}{2} +N} m_{02}^{N} \mathop {\sum _{t = 0}^{N} \sum _{m = 0}^{p-2N} \sum _{l = 0}^{q} \sum _{j = 0}^{\lfloor \frac{m}{2} \rfloor } \sum _{k = 0}^{\lfloor \frac{p-m-2N}{2} \rfloor }}_{\begin{array}{c} m+l \ \mathrm {even} \ \wedge \ N-\frac{p-q}{2} \ge \frac{l-m}{2} \ge 0 \end{array}} (-1)^{\frac{m+l}{2} +j+k+t} \left( {\begin{array}{c}q\\ l\end{array}}\right) p! \nonumber \\&\quad \cdot \frac{1}{2^{j+t}(j+t)!(m-2j)!} \frac{(j+t)!}{t!j!} \frac{(N-t+k)!}{(N-t)!k!} \frac{1}{2^{N-t+k}(N-t+k)!(p-m-2N-2k)!} \nonumber \\&\quad \cdot (l+m -2j-1)!! (p+q-l-m - 2N-2k-1)!! \nonumber \\&= \sum _{N = 0}^{\lfloor \frac{p}{2} \rfloor } m_{11}^{p-2N} m_{20}^{\frac{q-p}{2} +N} m_{02}^{N} \mathop {\sum _{t = 0}^{N} \sum _{m = 0}^{p-2N} \sum _{l = 0}^{q} \sum _{j = 0}^{\lfloor \frac{m}{2} \rfloor } \sum _{k = 0}^{\lfloor \frac{p-m-2N}{2} \rfloor }}_{\begin{array}{c} m+l \ \mathrm {even} \ \wedge \ N-\frac{p-q}{2} \ge \frac{l-m}{2} \ge 0 \end{array}} (-1)^{\frac{m+l}{2} +j+k+t} \left( {\begin{array}{c}q\\ l\end{array}}\right) p! \nonumber \\&\quad \cdot \frac{1}{2^{j}j!(m-2j)!} \frac{1}{2^{N+k}k!(p-m-2N-2k)!} \frac{1}{t!(N-t)!} \nonumber \\&\quad \cdot (l+m -2j-1)!! (p+q-l-m - 2N-2k-1)!! \nonumber \\&= \sum _{N = 0}^{\lfloor \frac{p}{2} \rfloor } m_{11}^{p-2N} m_{20}^{\frac{q-p}{2} +N} m_{02}^{N} \mathop {\sum _{m = 0}^{p-2N} \sum _{l = 0}^{q} \sum _{j = 0}^{\lfloor \frac{m}{2} \rfloor } \sum _{k = 0}^{\lfloor \frac{p-m-2N}{2} \rfloor }}_{\begin{array}{c} m+l \ \mathrm {even} \ \wedge \ N-\frac{p-q}{2} \ge \frac{l-m}{2} \ge 0 \end{array}} (-1)^{\frac{m+l}{2} +j+k} \left( {\begin{array}{c}q\\ l\end{array}}\right) p! \nonumber \\&\quad \cdot \frac{1}{(2j)!!(m-2j)!} \frac{1}{(2k)!!(p-m-2N-2k)!2^{N}N!} \nonumber \\&\quad \cdot (l+m -2j-1)!! (p+q-l-m - 2N-2k-1)!! \sum _{t = 0}^{N} (-1)^t \left( {\begin{array}{c}N\\ t\end{array}}\right) = \end{aligned}$$
(28)
$$\begin{aligned}&= \sum _{N = 0}^{\lfloor \frac{p}{2} \rfloor } m_{11}^{p-2N} m_{20}^{\frac{q-p}{2} +N} m_{02}^{N} \mathop {\sum _{m = 0}^{p-2N} \sum _{l = 0}^{q} \sum _{j = 0}^{\lfloor \frac{m}{2} \rfloor } \sum _{k = 0}^{\lfloor \frac{p-m-2N}{2} \rfloor }}_{\begin{array}{c} m+l \ \mathrm {even} \ \wedge \ N-\frac{p-q}{2} \ge \frac{l-m}{2} \ge 0 \end{array}} (-1)^{\frac{m+l}{2} +j+k} \left( {\begin{array}{c}q\\ l\end{array}}\right) p! \nonumber \\&\quad \cdot \frac{(2j-1)!!}{(2j)!(m-2j)!} \frac{(2k-1)!!}{(2k)!(p-m-2N-2k)!(2N)!!} \nonumber \\&\quad \cdot (l+m -2j-1)!! (p+q-l-m - 2N-2k-1)!! (1-1)^N . \end{aligned}$$
(29)

All the terms of (29) are zero if \(N>0\). If \(N=0\), there remains the last term only

$$\begin{aligned}&\mathop {\sum _{m = 0}^{p} \sum _{l = 0}^{q} \sum _{j = 0}^{\lfloor \frac{m}{2} \rfloor } \sum _{k = 0}^{\lfloor \frac{p-m}{2} \rfloor }}_{\begin{array}{c} m+l \ \mathrm {even} \ \wedge \ q-p \ge l-m \ge 0 \end{array}} (-1)^{\frac{m+l}{2} +j+k} \left( {\begin{array}{c}p\\ m\end{array}}\right) \left( {\begin{array}{c}q\\ l\end{array}}\right) \left( {\begin{array}{c}m\\ 2j\end{array}}\right) \left( {\begin{array}{c}p-m\\ 2k\end{array}}\right) \nonumber \\&\quad \cdot (2j-1)!! (2k-1)!! (l+m -2j-1)!! (p+q-l-m-2k-1)!!. \end{aligned}$$
(30)

Now we prove that this term is zero as well. This term is equivalent to

$$\begin{aligned}&\mathop {\sum _{m = 0}^{p} \sum _{l = 0}^{q}}_{\begin{array}{c} m+l \ \mathrm {even} \\ q-p \ge l-m \ge 0 \end{array}} (-1)^{\frac{m+l}{2}} \left( {\begin{array}{c}p\\ m\end{array}}\right) \left( {\begin{array}{c}q\\ l\end{array}}\right) \sum _{j = 0}^{\lfloor \frac{m}{2} \rfloor } (-1)^j \left( {\begin{array}{c}m\\ 2j\end{array}}\right) (l+m-2j-1)!! (2j-1)!! \nonumber \\&\quad \cdot \sum _{k = 0}^{\lfloor \frac{p-m}{2} \rfloor } (-1)^k \left( {\begin{array}{c}p-m\\ 2k\end{array}}\right) (p+q-l-m-2k-1)!! (2k-1)!! = \varXi . \end{aligned}$$
(31)

It can be shown for \( l \ge m\) using the method of generating functions described in Gould and Quaintance (2012) that

$$\begin{aligned} \sum _{j = 0}^{\lfloor \frac{m}{2} \rfloor } (-1)^j \left( {\begin{array}{c}m\\ 2j\end{array}}\right) (l+m-2j-1)!! (2j-1)!! = \frac{l!}{(l-m)!!}. \end{aligned}$$
(32)

We adopt the notation from Gould and Quaintance (2012) for double factorial binomial coefficients and we recall \((p+q)/2\) is even. The previous expression can be rewritten

$$\begin{aligned} \varXi&= \mathop {\sum _{m = 0}^{p} \sum _{l = 0}^{q}}_{\begin{array}{c} m+l \ \mathrm {even} \\ q-p \ge l-m \ge 0 \end{array}} (-1)^{\frac{m+l}{2}} \left( {\begin{array}{c}p\\ m\end{array}}\right) \left( {\begin{array}{c}q\\ l\end{array}}\right) \frac{l!}{(l-m)!!} \frac{(q-l)!}{(q-l-p+m)!!} = \nonumber \\&= \frac{q!}{(q-p)!!} \mathop {\sum _{m = 0}^{p} \sum _{l = m}^{q-p+m}}_{\begin{array}{c} m+l \ \mathrm {even} \\ q-p \ge l-m \ge 0 \end{array}} (-1)^{\frac{m+l}{2}} \left( {\begin{array}{c}p\\ m\end{array}}\right) \left( \left( {\begin{array}{c}q-p\\ l-m\end{array}}\right) \right) = \left| \begin{matrix} l - m = 2j \\ j = 0 : \frac{q-p}{2} \end{matrix} \right| = \nonumber \\&= \frac{q!}{(q-p)!!} \mathop {\sum _{m = 0}^{p} \sum _{j = 0}^{\frac{q-p}{2}}} (-1)^{j+m} \left( {\begin{array}{c}p\\ m\end{array}}\right) \left( \left( {\begin{array}{c}q-p\\ 2j\end{array}}\right) \right) = \nonumber \\&= \frac{q!}{(q-p)!!} \mathop {\sum _{m = 0}^{p}} (-1)^{m} \left( {\begin{array}{c}p\\ m\end{array}}\right) \sum _{j = 0}^{\frac{q-p}{2}} (-1)^j \left( \left( {\begin{array}{c}q-p\\ 2j\end{array}}\right) \right) \end{aligned}$$
(33)

The inner sum is zero if \(q > p\)

$$\begin{aligned}&\sum _{j = 0}^{\frac{q-p}{2}} (-1)^j \left( \left( {\begin{array}{c}q-p\\ 2j\end{array}}\right) \right) = \sum _{j = 0}^{\frac{q-p}{2}} (-1)^j \frac{(q-p)!!}{(2j)!!(q-p-2j)!!}\nonumber \\&\quad = \sum _{j = 0}^{\frac{q-p}{2}} (-1)^j \left( {\begin{array}{c}\frac{q-p}{2}\\ j\end{array}}\right) = (1-1)^{\frac{q-p}{2}} = 0. \end{aligned}$$
(34)

For the case \(q = p\) (\(q - p\) must be non-negative) the inner sum equals 1 and the expression (33) is

$$\begin{aligned} p! \mathop {\sum _{m = 0}^{p}} (-1)^{m} \left( {\begin{array}{c}p\\ m\end{array}}\right) = p! (1-1)^p \end{aligned}$$
(35)

which completes the proof because it is zero whenever \(p > 0\).

The formula

$$\begin{aligned} \mathop {\sum _{k = 0}^{p} \sum _{l = 0}^{q}}_{\begin{array}{c} k+l \ \mathrm {even} \end{array}} (-1)^{\frac{k+l}{2}} \left( {\begin{array}{c}p\\ k\end{array}}\right) \left( {\begin{array}{c}q\\ l\end{array}}\right) m_{l,k}^{(f_{N})} m_{q-l,p-k}^{(f_{N})} = 0 \end{aligned}$$
(36)

holds not only for \(p + q\) even but for all p and q. If \(p + q\) is odd, then \(m_{q-l,p-k}^{(f_{N})}\) is Gaussian moment of the odd order and all the terms in summation are zero. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostková, J., Flusser, J. Robust multivariate density estimation under Gaussian noise. Multidim Syst Sign Process 31, 1113–1143 (2020). https://doi.org/10.1007/s11045-020-00702-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-020-00702-7

Keywords

Navigation