Skip to main content
Log in

Realisation of some current-mode fractional-order VCOs/SRCOs using multiplication mode current conveyors

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper for the first time a catalogue of linear voltage-controlled fractional-order oscillators employing multiplication-mode current conveyor (MMCC) have been systematically derived using state variable approach. The work also includes detailed relevant analysis of the derived oscillators. Furthermore, three special cases are considered for each of the derived oscillators. Non-ideal analysis has been done for all the oscillators to show the impact of port non-idealities on the frequency. Port parasitics are also examined to justify the deviation between the theoretical and the simulated frequency values against the controlling voltage. Fourier analysis has been carried out to find out the total harmonic distortion figures. Functionality of all the oscillators have been verified on PSPICE utilizing the library files of AD844 and AD835 to realize MMCC. Simulation results are also provided for each special case including the integer-order case. Relevant MATLAB plots are provided for one of the oscillators to facilitate comparison between factional-order and oscillation parameters of the oscillator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Senani, R., Bhaskar, D. R., Singh, V. K., & Sharma, R. K. (2016). Sinusoidal oscillators and waveform generators using modern electronic circuit building blocks. New Delhi: Springer International Publishing. ISBN 978-3-319-23711-4.

    Book  Google Scholar 

  2. Biolek, D., Senani, R., Biolkova, V., & Kolka, Z. (2008). Active elements for analog signal processing: Classification. Review, and New Proposals, Radio Engineering Journal,17(4), 15–32.

    Google Scholar 

  3. Hribsek, M. A. R. I. J. A., & Newcomb, R. (1976). VCO controlled by one variable resistor. IEEE Transactions on circuits and systems,23(3), 166–169.

    Article  Google Scholar 

  4. Sundaramurthy, M., Bhattacharyya, B. B., & Swamy, M. N. S. (1977). A simple voltage controlled oscillator with grounded capacitors. Proceedings of the IEEE. https://doi.org/10.1109/PROC.1977.10784.

    Article  Google Scholar 

  5. Senani, R., Bhaskar, D. R., & Tripathi, M. P. (1993). On the realization of linear sinusoidal VCOs. International Journal of Electronics,74(5), 727–733.

    Article  Google Scholar 

  6. Bhaskar, D. R., & Senani, R. (1993). New current-conveyor-based single-resistance-controlled/voltage-controlled oscillator employing grounded capacitors. Electronics Letters,29(7), 612–614.

    Article  Google Scholar 

  7. Chang, C. M. (1994). Novel current-conveyor-based single-resistance-controlled/voltage-controlled oscillator employing grounded resistors and capacitors. Electronics Letters,30(3), 181–183.

    Article  Google Scholar 

  8. Liu, S. I. (1995). Single-resistance-controlled/voltage-controlled oscillator using current conveyors and grounded capacitors. Electronics Letters,31(5), 337–338.

    Article  MathSciNet  Google Scholar 

  9. Senani, R. (1996). New active-R sinusoidal VCOs with linear tuning laws. International Journal of Electronics,80(1), 57–61.

    Article  Google Scholar 

  10. Gupta, S. S., & Senani, R. (1998). State variable synthesis of single resistance controlled grounded capacitor oscillators using only two CFOAs. IEE Proceedings Circuits, Devices and Systems,145(2), 135–138.

    Article  Google Scholar 

  11. Bhaskar, D. R., & Tripathi, M. P. (2000). Realization of novel linear sinusoidal VCOs. Analog Integrated Circuits and Signal Processing,24(3), 263–267.

    Article  Google Scholar 

  12. Galan, J., Carvajal, R. G., Torralba, A., Munoz, F., & Ramirez-Angulo, J. (2005). A low-power low-voltage OTA-C sinusoidal oscillator with a large tuning range. IEEE Transactions on Circuits and Systems I: Regular Papers,52(2), 283–291.

    Article  Google Scholar 

  13. Gupta, S. S., Bhaskar, D. R., & Senani, R. (2009). New voltage controlled oscillators using CFOAs. AEU: International Journal of Electronics and Communications,63(3), 209–217.

    Google Scholar 

  14. Nandi, R., Kar, M., & Das, S. (2009). Electronically tunable dual-input integrator employing a single CDBA and a multiplier: Voltage controlled quadrature oscillator design. Active and Passive Electronic Components. https://doi.org/10.1155/2009/835789.

    Article  Google Scholar 

  15. Bhaskar, D. R., Senani, R., & Singh, A. K. (2010). Linear sinusoidal VCOs: New configurations using current-feedback-op-amps. International Journal of Electronics,97(3), 263–272.

    Article  Google Scholar 

  16. Bhaskar, D. R., Senani, R., Singh, A. K., & Gupta, S. S. (2010). Two simple analog multiplier based linear VCOs using a single current feedback op-amp. Circuits and Systems,1(1), 1–4.

    Article  Google Scholar 

  17. Gupta, S. S., Bhaskar, D. R., Senani, R., & Singh, A. K. (2011). Synthesis of linear VCOs: The state-variable approach. Journal of Circuits, Systems and Computers,20(04), 587–606.

    Article  Google Scholar 

  18. Gupta, S. S., Bhaskar, D. R., & Senani, R. (2012). Synthesis of new single CFOA-based VCOs incorporating the voltage summing property of analog multipliers. ISRN Electronics. https://doi.org/10.5402/2012/463680.

    Article  Google Scholar 

  19. Pradhan, A., Subhadhra, K. S., Atique, N., Sharma, R. K., & Gupta, S. S. (2018). MMCC-based current-mode fractional-order voltage-controlled oscillators. IEEE International Conference on Inventive Systems and Control (ICISC). https://doi.org/10.1109/ICISC.2018.8398901.

    Article  Google Scholar 

  20. Carlson, G., & Halijak, C. (1964). Approximation of fractional capacitors (1/s)^(1/n) by a regular Newton process. IEEE Transactions on Circuit Theory,11(2), 210–213.

    Article  Google Scholar 

  21. Khoichi, M., & Hironori, F. (1993). H∞ optimized wave absorbing control: Analytical and experimental result. Journal of Guidance, Control and Dynamics,16(6), 1146–1153.

    Article  Google Scholar 

  22. Oustaloup, A., Levron, F., Mathieu, B., & Nanot, F. M. (2000). Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,47(1), 25–39.

    Article  Google Scholar 

  23. Ahmad, W., El-Khazali, R., & Elwakil, A. S. (2001). Fractional-order Wien-bridge oscillator. Electronics Letters,37(18), 1110–1112.

    Article  Google Scholar 

  24. Biswas, K., Sen, S., & Dutta, P. K. (2006). Realization of a constant phase element and its performance study in a differentiator circuit. IEEE Transactions on Circuits and Systems II: Express Briefs,53(9), 802–806.

    Article  Google Scholar 

  25. Radwan, A. G., Soliman, A. M., & Elwakil, A. S. (2007). Design equations for fractional-order sinusoidal oscillators: Practical circuit examples. IEEE International Conference on Microelectronics. https://doi.org/10.1109/ICM.2007.4497668.

    Article  MATH  Google Scholar 

  26. Radwan, A. G., Soliman, A. M., & Elwakil, A. S. (2008). Design equations for fractional-order sinusoidal oscillators: Four practical circuit examples. International Journal of Circuit Theory and Applications,36(4), 473–492.

    Article  Google Scholar 

  27. Krishna, B. T., & Reddy, K. V. V. S. (2008). Active and passive realization of fractance device of order 1/2. Active and Passive Electronic Components. https://doi.org/10.1155/2008/369421.

    Article  Google Scholar 

  28. Elwakil, A. (2010). Fractional-order circuits and systems: An emerging interdisciplinary research area. IEEE Circuits and Systems Magazine,10(4), 40–50.

    Article  Google Scholar 

  29. Venkateswaran, P., Nandi, R., & Das, Sagarika. (2012). New integrators and differentiators using a MMCC. Circuits and Systems,3(3), 288–294.

    Article  Google Scholar 

  30. Valsa, J., & Vlach, J. (2013). RC models of a constant phase element. International Journal of Circuit Theory and Applications,41(1), 59–67.

    Google Scholar 

  31. Nandi, R., Venkateswaran, P., & Kar, Mousiki. (2014). MMCC based electronically tunable all pass filters using grounded synthetic inductor. Circuits and Systems,5(4), 89–97.

    Article  Google Scholar 

  32. Said, L. A., Radwan, A. G., Madian, A. H., & Soliman, A. M. (2016). Fractional-order oscillator based on single CCII. IEEE International Conference on Telecommunications and Signal Processing (TSP). https://doi.org/10.1109/TSP.2016.7760952.

    Article  Google Scholar 

  33. Comedang, T., & Intani, P. (2016). Current-controlled CFTA based fractional order quadrature oscillators. Circuits and Systems,7(13), 4201–4212.

    Article  Google Scholar 

  34. El-Naggar, A. M., Said, L. A., Radwan, A. G., Madian, A. H., & Soliman, A. M. (2017). Fractional order four-phase oscillator based on double integrator topology. IEEE International Conference on Modern Circuits and Systems Technologies (MOCAST). https://doi.org/10.1109/MOCAST.2017.7937685.

    Article  Google Scholar 

  35. Said, L. A., Radwan, A. G., Madian, A. H., & Soliman, A. M. (2017). Generalized family of fractional-order oscillators based on single CFOA and RC network. IEEE International Conference on Modern Circuits and Systems Technologies (MOCAST). https://doi.org/10.1109/MOCAST.2017.7937641.

    Article  Google Scholar 

  36. El-Naggar, A. M., Said, L. A., Radwan, A. G., Madian, A. H., & Soliman, A. M. (2017). Fractional order four-phase oscillator based on double integrator topology. IEEE International Conference on Modern Circuits and Systems Technologies (MOCAST). https://doi.org/10.1109/MOCAST.2017.7937685.

    Article  Google Scholar 

  37. Said, L. A., Radwan, A. G., Madian, A. H., & Soliman, A. M. (2017). Three fractional-order-capacitors-based oscillators with controllable phase and frequency. Journal of Circuits, Systems and Computers. https://doi.org/10.1142/S0218126617501602.

    Article  Google Scholar 

  38. Said, L. A., Radwan, A. G., Madian, A. H., & Soliman, A. M. (2015). Fractional order oscillators based on operational transresistance amplifiers. AEU-International Journal of Electronics and Communications,69(7), 988–1003.

    Article  Google Scholar 

  39. Senani, R., & Gupta, S. S. (1997). Synthesis of single-resistance-controlled oscillators using CFOAs: simple state-variable approach. IEE Proceedings-Circuits, Devices and Systems,144(2), 104–106.

    Article  Google Scholar 

  40. Hwang, Y.-S., Tu, S.-H., Liu, W.-H., & Chen, J.-J. (2009). New building block: Multiplication-mode current conveyor. IET Circuits, Devices and Systems,3(1), 41–48.

    Article  Google Scholar 

  41. Wu, J., & El-Masry, E. (1996). Current-mode ladder filters using multiple output current conveyors. IEE Proceedings-Circuits, Devices and Systems,143(4), 218–222.

    Article  Google Scholar 

  42. Gupta, S. S., & Senani, R. (1998). State variable synthesis of single-resistance-controlled grounded capacitor oscillators using only two CFOAs: Additional new realisations. IEE Proceedings-Circuits, Devices and Systems,145(6), 415–418.

    Article  Google Scholar 

  43. Caponetto, R., Dongola, G., Fortuna, L., & Petras, I. (2010). Fractional order systems: Modeling and control applications. World Scientific Series on Nonlinear Science Series A,72, 178.

    Google Scholar 

  44. Data-sheet and SPICE library file of AD835 and AD844, Analog Devices, USA.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravindra K. Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Derivation of state matrix coefficients for FO-VCO 2.3 of Table 2

Appendix: Derivation of state matrix coefficients for FO-VCO 2.3 of Table 2

figure d

By utilizing MMCC’s terminal relationship as given in Eq. (1) and voltage across C1 as x1 and across C2 as x2, we can write KCL at the nodes of C1 and C2 as

$$ C_{1} \frac{{dx_{1} }}{dt} = \frac{{kV_{c} x_{2} - kV_{c} x_{1} }}{{R_{1} }} + \frac{{kV_{c} x_{2} }}{{R_{2} }} $$
(18)
$$ C_{1} \dot{x}_{1} = - \frac{{kV_{c} x_{1} }}{{R_{1} }} + \frac{{kV_{c} x_{2} }}{{R_{1} }} + \frac{{kV_{c} x_{2} }}{{R_{2} }} $$
(19)

which can be rearranged as

$$ \dot{x}_{1} = \left( { - \frac{{kV_{c} }}{{R_{1} C_{1} }}} \right)x_{1} + \frac{{kV_{c} }}{{C_{1} }}\left( {\frac{1}{{R_{1} }} + \frac{1}{{R_{2} }}} \right)x_{2} $$
(20)
$$ C_{2} \frac{{dx_{2} }}{dt} = \frac{{kV_{c} x_{2} - kV_{c} x_{1} }}{{R_{3} }} $$
(21)
$$ C_{2} \dot{x}_{2} = - \frac{{kV_{c} x_{1} }}{{R_{3} }} + \frac{{kV_{c} x_{2} }}{{R_{3} }} $$
(22)

Similarly, Eq. 22 can be rearranged as

$$ \dot{x}_{2} = \left( { - \frac{{kV_{c} }}{{R_{3} C_{2} }}} \right)x_{1} + \left( {\frac{{kV_{c} }}{{R_{3} C_{2} }}} \right)x_{2} $$
(23)

Comparing Eqs. (20) and (23) with Eq. (3) the coefficients of the state matrix can be obtained as follows

$$ a_{11} = - \frac{{kV_{c} }}{{R_{1} C_{1} }}; \;a_{12} = \frac{{kV_{c} }}{{C_{1} }}\left( {\frac{1}{{R_{1} }} + \frac{1}{{R_{2} }}} \right); \;a_{21} = - \frac{{kV_{c} }}{{R_{3} C_{2} }};\; a_{22} = \frac{{kV_{c} }}{{R_{3} C_{2} }} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subhadhra, K.S., Sharma, R.K. & Gupta, S.S. Realisation of some current-mode fractional-order VCOs/SRCOs using multiplication mode current conveyors. Analog Integr Circ Sig Process 103, 31–55 (2020). https://doi.org/10.1007/s10470-020-01590-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-020-01590-4

Keywords

Navigation