Skip to main content
Log in

Inverse Design and Flow Distribution Analysis of Carreau Type Fluid Flow through Coat-Hanger Die

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

An analytical/numerical method is revisited and proposed for process material specific design of coat-hanger dies. For this aim, both representative viscosity approach (RVA) and electrical network method (ENM) are employed in combination within an iterative calculation process. Under favour of RVA, any viscosity model from the family of generalized Newtonian fluid models such as that of Carreau-Yasuda can be used within broad extrusion rate range in ENM without limitation in low and high values of shear rates. This provides great flexibility and accuracy in ENM which is a relatively simple and fast numerical method. First, this method is employed to design die geometry for a specific thermoplastic melt that provides uniform flow rate at the die exit. Later, the same method is modified and used to investigate the effects of non-newtonian fluids with varying power-law indices on the die performance. Evaluation of the performance of ENM coupled with RVA (ENM-RVA) is made by computational fluid dynamics (CFD) analyses. CFD analyses indicated that the method is very successful in designing die geometry for a specific fluid. Flow distributions predicted by the method for various fluids are in accordance with those of CFD runs. The ENM-RVA is a design/analysis technique which can be employed to see effects of material rheology and throughput on the coat-hanger die performance in a short time and can be used as an auxiliary tool which can provide the preliminary design geometry for the advanced design softwares working with optimization algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Grieß and H. Münstedt, Polym. Eng. Sci., 52, 2253 (2012).

    Article  Google Scholar 

  2. H. J. Grieß, T. I. Burghelea, and H. Münstedt, Polym. Eng. Sci., 52, 615 (2012).

    Article  Google Scholar 

  3. O. Yilmaz, E. Kisasöz, F. S. Guner, C. Nart, and K. Kirkkopru, Fiber. Polym., 15, 84 (2014).

    Article  CAS  Google Scholar 

  4. W. Michaeli, “Extrusion Dies for Plastics and Rubber”, 3rd ed., pp. 156–172, Hanser Publishers, Munich, 2003.

    Book  Google Scholar 

  5. H. H. Winter and H. G. Fritz, Polym. Eng. Sci., 26, 543 (1986).

    Article  CAS  Google Scholar 

  6. O. Yilmaz and K. Kirkkopru, Fiber. Polym., 16, 1955 (2015).

    Article  Google Scholar 

  7. Y. Matsubara, Polym. Eng. Sci., 19, 169 (1979).

    Article  CAS  Google Scholar 

  8. J. D. Reid, O. H. Campanella, C. M. Corvolan, and M. R. Okos, Polym. Eng. Sci., 43, 693 (2003).

    Article  CAS  Google Scholar 

  9. T. Liu, L. Liu, and J. Tsou, Polym. Eng. Sci., 34, 541 (1994).

    Article  CAS  Google Scholar 

  10. D. G. Baird and D. I. Collias, “Polymer Processing: Principles and Design”, 2nd ed., pp. 19–24, John Wiley & Sons, New York, 2014.

    Google Scholar 

  11. J. M. McKelvey and K. Ito, Polym. Eng. Sci., 11, 258 (1971).

    Article  CAS  Google Scholar 

  12. M. L. Booy, Polym. Eng. Sci., 22, 432 (1982).

    Article  CAS  Google Scholar 

  13. Y. Huang, C. R. Gentle, and J. B. Hull, Adv. Polym. Technol., 23, 111 (2004).

    Article  CAS  Google Scholar 

  14. X. Wang, T. Chen, and X. Huang, J. Appl. Polym. Sci., 101, 1570 (2006).

    Article  CAS  Google Scholar 

  15. K. Meng and X. Wang, Text. Res. J., 83, 249 (2013).

    Article  Google Scholar 

  16. W. Han and X. Wang, J. Appl. Polym. Sci., 123, 2511 (2012).

    Article  CAS  Google Scholar 

  17. N. Lebaal, F. Schmidt, and S. Puissant, Finite Elem. Anal. Des., 45, 333 (2009).

    Article  Google Scholar 

  18. W. Han and X. Wang, Fiber. Polym., 13, 626 (2012).

    Article  Google Scholar 

  19. Y. Li, J. Zheng, C. Xia, and W. Zhou, J. Appl. Polym. Sci., 123, 3189 (2012).

    Article  CAS  Google Scholar 

  20. S. Shetty, K. J. Ruschak, and S. J. Weinstein, Polym. Eng. Sci., 52, 1173 (2012).

    Article  CAS  Google Scholar 

  21. W. Han and X. Wang, Fiber. Polym., 15, 1190 (2014).

    Article  Google Scholar 

  22. C. W. Macosko, “Rheology: Principles, Measurements and Applications”, 1st ed., pp. 243–245, Wiley-VCH, New York, 1994.

    Google Scholar 

  23. A. B. Bas, O. Yilmaz, A. Ibis, M. Dogu, K. Kirkkopru, and F. S. Guner, J. Compos. Mater., 51, 2793 (2017).

    Article  CAS  Google Scholar 

  24. Z. Tadmor and C. G. Gogos, “Principles of Polymer Processing”, 2nd ed., pp. 731–742, John Wiley & Sons, New Jersey, 2006.

    Google Scholar 

  25. M. A. Barrera, J. F. Vega, and J. M. Salazar, J. Mater. Process. Technol., 197, 221 (2008).

    Article  CAS  Google Scholar 

  26. A. G. Rejon, R. W. DiRaddo, and M. E. Ryan, J. Non-Newtonian Fluid Mech., 60, 107 (1995).

    Article  Google Scholar 

  27. C. Rauwendaal, “Polymer Extrusion”, 4th ed., pp. 175–179, Münich, Hanser, 2001.

    Google Scholar 

  28. R. B. Bird, R. C. Armstrong, and O. Hassager, “Dynamics of Polymeric Liquids, Vol. 1, Fluid Mechanics”, 2nd ed., pp. 255–279, John Wiley & Sons, New York, 1987.

    Google Scholar 

  29. M. Fortin, Int. J. Numer. Meth. Fl., 1, 347 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oktay Yilmaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilmaz, O., Kirkkopru, K. Inverse Design and Flow Distribution Analysis of Carreau Type Fluid Flow through Coat-Hanger Die. Fibers Polym 21, 204–215 (2020). https://doi.org/10.1007/s12221-020-9237-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9237-9

Keywords

Navigation