Skip to main content
Log in

Role of Carbon Black for Enhancing the Mechanical Properties of Short Aramid Fiber Reinforced Ethylene-Acrylic Rubber

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Composites based on ethylene-acrylic rubber and 1 mm short aramid fibers (AF) were developed by varying the fiber content from 3 to 40 phr. At 10 phr short fiber loading, the tensile modulus (10 % modulus) of the neat matrix was around 11 times increased. However, its breaking elongation was decreased from 408 to 58 %. This drastic reduction in the breaking elongation even at a 10 phr fiber loading leads to a brittle failure with inferior toughness. The tensile-fractured surface of the fiber-filled composite showed an intact matrix with no plastic deformation during fiber pulled-out. To solve this problem, carbon black (CB) was used as a toughening agent. Surprisingly, the addition of 20 phr CB onto a 10 phr AF-filled composite enhanced its 10 % modulus in the longitudinal direction by 70 % and also enhanced its breaking elongation from 58 to 351 %. From the morphological analysis, it has been presumed that the addition of CB enhanced the friction between the fiber and the matrix at a very low strain and also facilitate the matrix for a plastic deformation at a higher strain. This enhanced friction between the fiber and the matrix is considered as the improved low strain modulus and the subsequent plastic deformation at a higher strain is responsible for the improved toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. K. De and J. R. White, “Short Fiber Polymer Composites”, Woodhead, Cambridge, England, 1996.

    Book  Google Scholar 

  2. M. J. Folkes, “Short Fiber Reinforced Thermoplastics”, John Wiley and Sons Ltd., 1982.

    Google Scholar 

  3. D. C. Derringer, J. Elastoplast., 3, 230 (1971).

    Article  CAS  Google Scholar 

  4. L. A. Goettler and K. S. Shen, Rubb. Chem. Technol., 56, 619 (1983).

    Article  CAS  Google Scholar 

  5. L. A. Goettler and K. S. Shen, Polym. Comp., 5, 60 (1984).

    Article  CAS  Google Scholar 

  6. J. E. O’Connor, Rubb. Chem. Technol., 50, 945 (1977).

    Article  Google Scholar 

  7. W. B. Wennekes, J. W. M. Noordermeer, and R. N. Datta, Kautsch Gummi Kunstst., 60, 20 (2007).

    CAS  Google Scholar 

  8. W. B. Wennekes, J. W. M. Noordermeer, and R. N. Datta, Rubb. Chem. Technol., 80, 545 (2007).

    Article  CAS  Google Scholar 

  9. W. B. Wennekes, J. W. M. Noordermeer, and R. N. Datta, Rubber Chem. Technol., 80, 565 (2007).

    Article  CAS  Google Scholar 

  10. S. Praveen, P. K. Chattopadhyay, S. Jayendran, B. K. Chakraborty, and S. Chattopadhyay, Polym. Int., 59, 187 (2010).

    CAS  Google Scholar 

  11. M. Shirazi and J. W. M. Noordermeer, Rubber Chem. Technol., 84, 187 (2011).

    Article  CAS  Google Scholar 

  12. M. Shirazi, A. G. Talma, and J. W. M. Noordermeer, J. Adhes. Sci. Technol., 27, 1048 (2013).

    Article  CAS  Google Scholar 

  13. M. Shirazi, A. G. Talma, and J. W. M. Noordermeer, J. Appl. Polym. Sci., 128, 2255 (2013).

    Article  CAS  Google Scholar 

  14. C. Hintze, M. Shirazi, S. Wiessner, A. G. Talma, G. Heinrich, and J. W. M. Noordermeer, Rubber Chem. Technol., 86, 579 (2013).

    Article  CAS  Google Scholar 

  15. C. Hintze, C. R. Boldt, S. wiessner, G. Heinrich, and J. W. M. Noordermeer, J. Appl. Polym. Sci., 130, 1682 (2013).

    Article  CAS  Google Scholar 

  16. P. Pittayavinaim, S. Thanawan, and T. Amornsakchai, Polym. Test., 64, 109 (2017).

    Article  Google Scholar 

  17. B. Zhang, B. Gu, and X. Yu, J. Appl. Polym. Sci., 132, 41672 (2015).

    Google Scholar 

  18. M. Tian, L. Su, W. Cai, S. Yin, Q. Chen, H. Fong, and L. Zhang, J. Appl. Polym. Sci., 120, 1439 (2011).

    Article  CAS  Google Scholar 

  19. H. S. Mohammed, K. Elangovan, and V. Subrahmanian, Indian J. Adv. Chem. Sci., 4, 458 (2016).

    CAS  Google Scholar 

  20. B. C. Begnoche, R. L. Keefe, and A. G. Causa, Rubber Chem. Technol., 60, 689 (1987).

    Article  CAS  Google Scholar 

  21. X. He, X. Shi, M. Hoch, and C. Gogelein, Polym. Compos., 39, 3212 (2017).

    Article  Google Scholar 

  22. M. R. Kashani, J. Appl. Polym. Sci., 113, 1355 (2009).

    Article  CAS  Google Scholar 

  23. N. Kanbargi and A. J. Lesser, J. Appl. Polym. Sci., doi:10.1002/APP.45520 (2017).

    Google Scholar 

  24. K. Gerard, Macromol. Mater. Eng., 60, 215 (1977).

    Google Scholar 

  25. S. Gopi Sathi, H. Kim, Y. Seong, G. Kang, and C. Nah, Polym. Compos., doi:10.1002/pc.25141 (2018).

    Google Scholar 

  26. S. Gopi Sathi and K. Naskar, J. Appl. Polym. Sci., 130, 2205 (2013).

    Article  Google Scholar 

  27. S. Gopi Sathi, J. Jeon, H. H. Kim, and C. Nah, Plast. Rubber Compos., 48, 115 (2019).

    Article  Google Scholar 

  28. S. Gopi Sathi and K. Naskar, Polym. Compos., 35, 1767 (2014).

    Article  Google Scholar 

  29. S. Gopi Sathi and K. Naskar, Express Polym. Lett., 6, 329 (2012).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A3B03932709).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shibulal Gopi Sathi or Changwoon Nah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seong, Y., Sathi, S.G., Park, J. et al. Role of Carbon Black for Enhancing the Mechanical Properties of Short Aramid Fiber Reinforced Ethylene-Acrylic Rubber. Fibers Polym 21, 127–137 (2020). https://doi.org/10.1007/s12221-020-9346-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9346-5

Keywords

Navigation