Skip to main content
Log in

Computing Pore Size Distribution in Non-woven Fibrous Filter Media

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Fundamental understanding of transport properties of non-woven fibrous material is depended on in dept cognition of their microstructure. Non-woven fibrous filter media are formed by the random distribution of fibers in a specific space exhibit a complicated pore size structure. Computing pore size distribution (PSD) is a vital parameter in studying material transport dynamics. In this work, a theoretical model was suggested based on the gamma distribution and fiber orientation distribution to predict the PSD in non-woven fibrous filter media. In parallel, the analytical model was compared with the previous PSD theories and experimental results. The 3D virtual fiber structure was constructed by using GeoDict code, and the pore size was represented by the inscribed circle diameter. Parameters influencing the PSD were studied, including fiber diameter, porosity, and fiber orientation. Comparison of simulation results with analytical model was made. The results demonstrate that the angle between the fiber and the Z-axis has little effect on the PSD. When the porosity is consistent, smaller pores can be formed by reducing fiber diameter. With the fiber diameter is constant, larger pores can be formed by increasing the porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Farukh, E. Demirci, B. Sabuncuoglu, M. Acar, B. Pourdeyhimi, and V. V. Silberschmidt, Comput. Mater. Sci., 94, 8 (2014).

    Article  Google Scholar 

  2. M. Ziabari, V. Mottaghitalab, and A. K. Haghi, Korean J. Chem. Eng., 25, 923 (2008).

    Article  CAS  Google Scholar 

  3. T. Galy, D. Mu, M. Marszewski, and L. Pilon, Comput. Mater. Sci., 157, 156 (2019).

    Article  CAS  Google Scholar 

  4. X. M. Xiong, T. Yang, R. Mishra, and J. Militky, Fiber. Polym., 17, 1709 (2016).

    Article  CAS  Google Scholar 

  5. R. C. Brown, Chem. Eng. Sci., 48, 3535 (1993).

    Article  CAS  Google Scholar 

  6. M. S. Abdel-Ghani and G. A. Davis, Chem. Eng. Sci., 40, 117 (1985).

    Article  CAS  Google Scholar 

  7. J. Castro and M. Ostoja-Starzewski, Appl. Math. Model., 24, 523 (2000).

    Article  Google Scholar 

  8. M. Beizaie, Sep. Technol., 1, 132 (1991).

    Article  CAS  Google Scholar 

  9. S. A. Hosseini and H. Vahedi Tafreshi, Sep. Purif. Technol., 74, 160 (2010).

    Article  CAS  Google Scholar 

  10. A. R. R. Fairclough, K. L. Chan, and G. A. Davis, Chem. Eng. Res. Des., 65, 396 (1987).

    CAS  Google Scholar 

  11. V. A. Kirsh and A. V. Shabatin, Colloid. J., 77, 30 (2015).

    Google Scholar 

  12. M. N. Pons, Chem. Eng. J., 35, 201 (1987).

    Article  CAS  Google Scholar 

  13. N. Rao and M. Faghri, Aerosol. Sci. Technol., 8, 133 (1988).

    Article  CAS  Google Scholar 

  14. T. Lück and R. Tittel, Chem. Biochem. Eng. Q., 7, 169 (1993).

    Google Scholar 

  15. N. M. Jackson, N. M. Jackson, R. Jafferali, D. J. Bell, and G. A. Davies, J. Membr. Sci., 162, 23 (1999).

    Article  CAS  Google Scholar 

  16. S. Abishek, A. J. J. King, R. Mead-Hunter, V. Golkarfard, W. Heikamp, and B. J. Mullins, Sep. Purif. Technol., 188, 493 (2017).

    Article  CAS  Google Scholar 

  17. B. Maze, H. V. Tafreshi, Q. Wang, and B. Pourdeyhimi, Aerosol Sci., 38, 550 (2007).

    Article  CAS  Google Scholar 

  18. E. T. Wilkinson and G. A. Davies, Can. J. Chem. Eng., 63, 891 (1985).

    Article  CAS  Google Scholar 

  19. W. Sambaer, M. Zatloukal, and D. Kimmer, Chem. Eng. Sci., 66, 613 (2011).

    Article  CAS  Google Scholar 

  20. E. Schweers and Löffler, Powder Technol., 80, 191 (1994).

    Article  Google Scholar 

  21. Q. Wang, B. Maze, H. V. Tafreshi, and B. Pourdeyhimi, Chem. Eng. Sci., 61, 4871 (2006).

    Article  CAS  Google Scholar 

  22. S. A. Hosseini and H. V. Tafreshi, Powder Technol., 201, 153 (2010).

    Article  CAS  Google Scholar 

  23. G. R. Bolton, D. LaCasse, M. J. Lazzara, and R. Kuriyel, AIChE J., 51, 2978 (2005).

    Article  CAS  Google Scholar 

  24. S. Zobel, B. Maze, H. V. Tafreshi, Q. Wang, and B. Pourdeyhimi, Chem. Eng. Sci., 62, 6285 (2007).

    Article  CAS  Google Scholar 

  25. I. Fatt, S. P. E., 207, 144 (1956).

    Google Scholar 

  26. R. Steele, Text. Res. J., 28, 144 (1958).

    Article  CAS  Google Scholar 

  27. S. K. Bhatia and J. L. Smith, Test. J., 18, 94 (1995).

    Google Scholar 

  28. H. W. Piekaar and L. A. Clarenburg, Chem. Eng. Sci., 22, 1399 (1967).

    Article  Google Scholar 

  29. H. Corte and E. H. Lloyd, P. Natl, Acad. Sci., 52, 901 (1964).

    Article  Google Scholar 

  30. R. E. Miles, Proc. Natl. Acad. Sci., 52, 901 (1964).

    Article  CAS  PubMed  Google Scholar 

  31. C. Dodson, A. Handley, Y. Oba, and W. Sampson, Appita. J., 56, 275 (2003).

    Google Scholar 

  32. W. W. Sampson, J. Mater. Sci., 36, 5131 (2001).

    Article  CAS  Google Scholar 

  33. W. W. Sampson, J. Mater. Sci., 38, 1617 (2003).

    Article  CAS  Google Scholar 

  34. E. Demirci, M. Acar, M. Pourdeyhimi, and V. V. Silberschmidt, Comput. Mater. Sci., 52, 157 (2012).

    Article  CAS  Google Scholar 

  35. A. L. Rollin, R. Denis, L. Estaque, and J. Masounave, Can. J. Chem., 60, 226 (1982).

    Article  CAS  Google Scholar 

  36. M. S. Abdel-Ghani and G. A. Davies, Chem. Eng. Sci., 40, 117 (1985).

    Article  CAS  Google Scholar 

  37. H. S. Kim and B. Pourdeyhimi, International Non-wovens Journal, Winter, 9, 15 (2000).

    CAS  Google Scholar 

  38. T. Komori and K. Makashima, Text. Res. J., 48, 309 (1978).

    Article  CAS  Google Scholar 

  39. Y. H. Faure, J. P. Gourc, and P. Gendrin, “Geosynthetics: Microstructure and Performance”, ASTM Special Technical Publication, p.102, 1990.

    Google Scholar 

  40. Y. H. Faure, J. P. Gourc, F. Millot, and S. Sunjoto, Proceedings of the Third International Conference on Geotextiles, p.1275, 1986.

    Google Scholar 

  41. G. Lombard, A. Rollin, and C. Wolff, Text. Res. J., 59, 208 (1989).

    Article  CAS  Google Scholar 

  42. N. Pan, Text. Res. J., 63, 336 (1993).

    Article  Google Scholar 

  43. D. H. Lee and J. K. Lee, Initial Compressional Behavior of Fibre Assembly, in “Objective Measurement: Applications to Product Design and Process Control” (S. Kawabata, R. Postle, and M. Niwa Eds.), pp.613–622, The Textile Machinery Society of Japan, Osaka, 1985.

    Google Scholar 

  44. S. J. Eichhorn and W. W. Sampson, J. R. Soc. Interface., 2, 309 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  45. R. Roy and S. M. Ishtiaque, Fiber. Polym., 20, 191 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.1607117) and Tianjin City Applied Foundation and Emerging Technology Research Program (Grant No.15JCZDJC38500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, H., Qian, X., Fan, J. et al. Computing Pore Size Distribution in Non-woven Fibrous Filter Media. Fibers Polym 21, 196–203 (2020). https://doi.org/10.1007/s12221-020-9181-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9181-8

Keywords

Navigation