Skip to main content
Log in

Eco-Friendly Manufacturing of Nano-TiO2 Coated Cotton Textile with Multifunctional Properties

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this work, multifunctional cotton fabrics were developed by immobilizing TiO2 nanoparticles (TiO2-NPs) using an eco-friendly bath through a highly-scalable technique. The effects of TiO2-NPs, cross-linking agent, catalyst and curing temperatures were assessed by analysis of variance and surface response methodology. The results disclose an excellent performance of treated textiles for various applications: flame-retardant (char content enhanced by 1000 %), photocatalytic decontamination (>90 % of contaminant abatement and feasibility for multiple reuses), self-cleaning of intense stains (up to 80 % of stain vanishing), bacterial inhibition without TiO2 UV-activation (≈25 % of bacteria growth reduction). Moreover, those properties were durable for at least five domestic laundering cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Harifi and M. Montazer, Carbohydr. Polym., 88, 1125 (2012).

    Article  CAS  Google Scholar 

  2. S. Hashemikia and M. Montazer, Appl. Catal. A, 417, 200 (2012).

    Article  CAS  Google Scholar 

  3. M. E. Vance, T. Kuiken, E. P. Vejerano, S. P. McGinnis, M. F. Hochella Jr, D. Rejeski, and M. S. Hull, Beilstein J. Nanotechnol., 6, 1769 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. E. Asmatulu, J. Twomey, and M. Overcash, J. Nanopart. Res., 14, 720 (2012).

    Article  Google Scholar 

  5. M. Radetić, J. Photochem. Photobiol. C, 16, 62 (2013).

    Article  CAS  Google Scholar 

  6. J. Wang, J. Zhao, L. Sun, and X. Wang, Text. Res. J., 85, 1104 (2015).

    Article  CAS  Google Scholar 

  7. D. Pasqui and R. Barbucci, J. Photochem. Photobiol. A, 274, 1 (2014).

    Article  CAS  Google Scholar 

  8. A. R. Horrocks in “Handbook of Technical Textiles”, 2nd ed. (A. R. Horrocks and S. C. Anand Eds.), Vol. 2, pp.237–267, Woodhead Publishing, Cambridge, 2016.

    Article  CAS  Google Scholar 

  9. J. W. S. Hearle in “Cotton:Science and Technology”, 1st ed. (S. Gordon and Y.-L. Hsieh Eds.), Vol. 1, pp.35–65, Woodhead Publishing, Cambridge, 2006.

    Google Scholar 

  10. M. T. Noman, M. A. Ashraf, H. Jamshaid, and A. Ali, Fiber. Polym., 19, 2268 (2018).

    Article  CAS  Google Scholar 

  11. F. Emami, S. Shekarriz, Z. Shariatinia, and Z. Moridi Mahdieh, Fiber. Polym., 19, 1014 (2018).

    Article  CAS  Google Scholar 

  12. L. Karimi, M. Mirjalili, M. E. Yazdanshenas, and A. Nazari, Photochem. Photobiol., 86, 1030 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. A. Nazari, M. Montazer, A. Rashidi, M. Yazdanshenas, and M. Anary-Abbasinejad, Appl. Catal. A, 371, 10 (2009).

    Article  CAS  Google Scholar 

  14. Z. Li, Y. Dong, B. Li, P. Wang, Z. Chen, and L. Bian, Mater. Des., 140, 366 (2018).

    Article  CAS  Google Scholar 

  15. O. Carp, C. L. Huisman, and A. Reller, Prog. Solid State Chem., 32, 33 (2004).

    Article  CAS  Google Scholar 

  16. F. Lessan, M. Montazer, and M. B. Moghadam, Thermochim. Acta, 520, 48 (2011).

    Article  CAS  Google Scholar 

  17. C. Q. Yang, X. Wang, and I.-S. Kang, Text. Res. J., 67, 334 (1997).

    Article  CAS  Google Scholar 

  18. E. Galoppini, Coord. Chem. Rev., 248, 1283 (2004).

    Article  CAS  Google Scholar 

  19. C. Schramm, S. B. Vukušić, and D. Katović, Color. Technol., 118, 244 (2002).

    Article  CAS  Google Scholar 

  20. ASTM D3776/D3776M, American Society for Testing and Materials, 2017.

  21. ASTM D7309, American Society for Testing and Materials, 2013.

  22. ISO 10678 (E), International Organization for Standardization, 2010.

  23. ISO 105-C06, International Organization for Standardization, 2010.

  24. K. T. Meilert, D. Laub, and J. Kiwi, J. Mol. Catal. A: Chem., 237, 101 (2005).

    Article  CAS  Google Scholar 

  25. N. Mengal, U. Syed, S. A. Malik, I. A. Sahito, and S. H. Jeong, Carbohydr. Polym., 153, 78 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. S. Alay and E. Genc, Cellulose Chem. Technol., 49, 405 (2015).

    Google Scholar 

  27. D. Ciolacu, F. Ciolacu, and V. Popa, Cellulose Chem. Technol., 45, 13 (2011).

    CAS  Google Scholar 

  28. F. Fang, X. Zhang, Y. Meng, Z. Gu, C. Bao, X. Ding, S. Li, X. Chen, and X. Tian, Surf. Coat. Technol., 262, 9 (2015).

    Article  CAS  Google Scholar 

  29. Y. Liu, Y.-T. Pan, X. Wang, P. Acuña, P. Zhu, U. Wagenknecht, G. Heinrich, X.-Q. Zhang, R. Wang, and D.-Y. Wang, Chem. Eng. J., 294, 167 (2016).

    Article  CAS  Google Scholar 

  30. H. Pan, W. Wang, Y. Pan, L. Song, Y. Hu, and K. M. Liew, Carbohydr. Polym., 115, 516 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. X. Wu and C. Q. Yang, J. Appl. Polym. Sci., 108, 1582 (2008).

    Article  CAS  Google Scholar 

  32. A. M. Grancaric, C. Colleoni, E. Guido, L. Botteri, and G. Rosace, Prog. Org. Coat., 103, 174 (2017).

    Article  CAS  Google Scholar 

  33. L. Costes, F. Laoutid, S. Brohez, and P. Dubois, Mater. Sci. Eng. R, 117, 1 (2017).

    Article  Google Scholar 

  34. C. Poon and C. Kan, Carbohydr. Polym., 121, 457 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. D. Price, A. R. Horrocks, M. Akalin, and A. A. Faroq, J. Anal. Appl. Pyrolysis, 40, 511 (1997).

    Article  Google Scholar 

  36. S. Liodakis, I. K. Fetsis, and I. P. Agiovlasitis, J. Therm. Anal. Calorim., 98, 285 (2009).

    Article  CAS  Google Scholar 

  37. A. Nazari, M. Montazer, and M. B. Moghadam, J. Text. Inst., 103, 985 (2012).

    Article  CAS  Google Scholar 

  38. D. Mihailović, Z. Šaponjić, M. Radoičić, S. Lazović, C. J. Baily, P. Jovančić, J. Nedeljković, and M. Radetić, Cellulose, 18, 811 (2011).

    Article  CAS  Google Scholar 

  39. Q. M. Wang, L. Tan, R. W. Zhou, Z. W. Zou, and X. M. Xu, Adv. Mater. Res., 332, 1040 (2011).

    Article  CAS  Google Scholar 

  40. S. Rtimi, C. Pulgarin, R. Sanjines, and J. Kiwi, Appl. Catal. B, 162, 236 (2015).

    Article  CAS  Google Scholar 

  41. F. Azeez, E. Al-Hetlani, M. Arafa, Y. Abdelmonem, A. A. Nazeer, M. O. Amin, and M. Madkour, Sci. Rep., 8, 7104 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. M. A. Rauf, M. A. Meetani, A. Khaleel, and A. Ahmed, Chem. Eng. J., 157, 373 (2010).

    Article  CAS  Google Scholar 

  43. S. R. Saad, N. Mahmed, M. M. A. B. Abdullah, and A. V. Sandu, IOP Conf. Ser.: Mater. Sci. Eng., 133, 012028 (2016).

    Article  Google Scholar 

  44. A. Bozzi, T. Yuranova, I. Guasaquillo, D. Laub, and J. Kiwi, J. Photochem. Photobiol. A, 174, 156 (2005).

    Article  CAS  Google Scholar 

  45. J. Kiwi and C. Pulgarin, Catal. Today, 151, 2 (2010).

    Article  CAS  Google Scholar 

  46. W. Zhou, Y. Zhang, and Y. Shi, Fiber. Polym., 18, 1073 (2017).

    Article  CAS  Google Scholar 

  47. S. B. Chaudhari, A. A. Mandot, and B. H. Patel, IJSR, 1, 24 (2012).

    Google Scholar 

  48. M. Mirhosseini and F. B. Firouzabadi, Int. J. Dairy Technol., 66, 291 (2013).

    Article  CAS  Google Scholar 

  49. P. V. L. Reddy, B. Kavitha, P. A. K. Reddy, and K.-H. Kim, Environ. Res., 154, 296 (2017).

    Article  CAS  Google Scholar 

  50. P. C. Maness, S. Smolinski, D. M. Blake, Z. Huang, E. J. Wolfrum, and W. A. Jacoby, Appl. Environ. Microbiol., 65, 4094 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. A. Nazari, J. Text. I., 105, 620 (2014).

    Article  CAS  Google Scholar 

  52. K. P. Kühn, I. F. Chaberny, K. Massholder, M. Stickler, V. W. Benz, H.-G. Sonntag, and L. Erdinger, Chemosphere, 53, 71 (2003).

    Article  PubMed  CAS  Google Scholar 

  53. K. Sunada, Y. Kikuchi, K. Hashimoto, and A. Fujishima, Environ. Sci. Technol., 32, 726 (1998).

    Article  CAS  Google Scholar 

  54. S. Rtimi, M. K. S. Ballo, D. Laub, C. Pulgarin, J. M. Entenza, A. Bizzini, R. Sanjines, and J. Kiwi, Appl. Catal. A, 498, 185 (2015).

    Article  CAS  Google Scholar 

  55. C. Pulgarin, J. Kiwi, and V. Nadtochenko, Appl. Catal. B, 128, 179 (2012).

    Article  CAS  Google Scholar 

  56. O. Baghriche, S. Rtimi, C. Pulgarin, C. Roussel, and J. Kiwi, Appl. Catal. B, 130, 65 (2013).

    Article  CAS  Google Scholar 

  57. L. V. Zhukova, J. Kiwi, and V. V. Nikandrov, Colloids Surf. B, 97, 240 (2012).

    Article  CAS  Google Scholar 

  58. S. H. Hsieh, Z. K. Huang, Z. Z. Huang, and Z. S. Tseng, J. Appl. Polym. Sci., 94, 1999 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES). The authors acknowledge Teka S.A. for kindly providing the fabric used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirele Horsth de Paiva Teixeira.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Paiva Teixeira, M.H., Lourenço, L.A., Artifon, W. et al. Eco-Friendly Manufacturing of Nano-TiO2 Coated Cotton Textile with Multifunctional Properties. Fibers Polym 21, 90–102 (2020). https://doi.org/10.1007/s12221-020-9462-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9462-2

Keywords

Navigation