Skip to main content

Advertisement

Log in

Selection of efficient absorbent for CO2 capture from gases containing low CO2

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Amine-based absorption processes are widely used in natural gas processing, but recently they have been considered for CO2 capture from flue gas emitted from thermal power plants. The main issue of amine used in the CO2 capture process is the high cost of solvent regeneration. So, this issue can be solved by using efficient amine absorbent. The amine type absorbents employed in the experimentation were an aqueous blend of 2-(Diethylamino)ethanol (DEEA) with different types of diamine activators such as piperazine (PZ), 2-(2-aminoethylamino)ethanol (AEEA), hexamethylenediamine (HMDA), ethylenediamine (EDA), and 3-(Dimethylamino)-1-propylamine (DMAPA). An absorption experiment was performed to evaluate the CO2 absorption performance in terms of CO2 loading, absorption capacity, and absorption rate. The experiment was performed to assess the CO2 desorption performance in terms of desorption capacity, desorption rate, cyclic capacity, and regeneration efficiency. From the results of absorption-desorption and comparison with benchmark amine absorbent MEA, the aqueous blend of DEEA and HMDA indicated the best performance for CO2 capture applications among all the tested amine blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IEA, World Energy Outlook 2016, International Energy Agency, Paris, France (2016).

    Google Scholar 

  2. M. Zaman and J. H. Lee, Korean J. Chem. Eng., 30(8), 1497 (2013).

    Article  CAS  Google Scholar 

  3. Y. Xu, L. Isom and M. A. Hanna, Bioresour. Technol., 101, 3311 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. J. P. Ciferno, T. E. Fout, A. P. Jones and J. T. Murphy, Chem. Eng. Prog., 105, 33 (2009).

    CAS  Google Scholar 

  5. A. B. Rao and E. S. Rubin, Environ. Sci. Technol., 36, 4467 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. B. Xu, H. Gao, X. Luo, H. Liao and Z. Liang, Int. J. Greenh. Gas Control, 51, 11 (2016).

    Article  CAS  Google Scholar 

  7. A. L. Kohl and R. B. Nielsen, Gas purification, 5th Ed., Gulf Publishing: Houston, TX (1997).

    Google Scholar 

  8. M. Xiao, H. Liu, H. Gao and Z. Liang, J. Chem. Thermodyn., 122, 170 (2018).

    Article  CAS  Google Scholar 

  9. A. Nouacer, F. B. Belaribi, I. Mokbel and J. Jose, J. Mol. Liq., 190, 6 (2014).

    Article  CAS  Google Scholar 

  10. H. Ling, H. Gao and Z. Liang, Chem. Eng. J., 355, 369 (2019).

    Article  CAS  Google Scholar 

  11. J. Narku-Tetteh, P. Muchan and R. Idem, Sep. Purif. Technol., 187, 453 (2017).

    Article  CAS  Google Scholar 

  12. A. Wilk, L. Więcław-Solny, A. Tatarczuk, A. Krótki, T. Spietz and T. Chwola, Korean J. Chem. Eng., 34(I), 2275 (2017).

    Article  CAS  Google Scholar 

  13. B. Yu, H. Yu, K. Li, Q. Yang, R. Zhang, L. Li and Z. Chen, Appl. Energy, 208, 1308 (2017).

    Article  CAS  Google Scholar 

  14. P. Muchan, J. Narku-Tetteh, C. Saiwan, R. Idem and T. Supap, Sep. Purif. Technol., 184, 128 (2017).

    Article  CAS  Google Scholar 

  15. J. H. Choi, Y. E. Kim, S. C. Nam, S. H. Yun, Y. I. Yoon and J. Lee, Korean J. Chem. Eng., 33(11), 3222 (2016).

    Article  CAS  Google Scholar 

  16. S. Liu, H. Gao, C. He and Z. Liang, Appl. Energy, 233, 443 (2019).

    Article  CAS  Google Scholar 

  17. G. T. Rochelle, Science, 325, 1652 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. S. Ma’mun, H. F. Svendsen, K. A. Hoff and O. Juliussen, Energy Convers. Manage., 48, 251 (2007).

    Article  CAS  Google Scholar 

  19. O. F. Dawodu and A. Meisen, Can. J. Chem. Eng., 74, 960 (2010).

    Article  Google Scholar 

  20. F. Vega, A. Sanna, B. Navarrete, M. M. Maroto-Valer and V. J. Cortés, Greenh. Gases Sci. Technol., 4, 707 (2014).

    Article  CAS  Google Scholar 

  21. H. Gao, Z. Wu, H. Liu, X. Luo and Z. Liang, Energy Fuels, 31, 13883 (2017).

    Article  CAS  Google Scholar 

  22. T. Chakravarty, U. K. Phukan and R. H. Weiland, Chem. Eng. Prog., 4, 32 (1985).

    Google Scholar 

  23. N. Ramachandran, A. Aboudheir, R. Idem and P. Tontiwachwuthikul, Ind. Eng. Chem. Res., 45, 2608 (2006).

    Article  CAS  Google Scholar 

  24. T. Sema, A. Naami, K. Fu, M. Edali, H. Liu, H. Shi, Z. Liang, R. Idem and P. Tontiwachwuthikul, Chem. Eng. J., 209, 501 (2012).

    Article  CAS  Google Scholar 

  25. A. Benamor and M. J. Al-Marri, Int. J. Chem. Eng. Appl., 5, 4 (2014).

    Google Scholar 

  26. B. P. Mandal and S. S. Bandyopadhyay, Chem. Eng. Sci., 61, 5440 (2006).

    Article  CAS  Google Scholar 

  27. J. Xiao, C. W. Li and M. H. Li, Chem. Eng. Sci., 55, 161 (2000).

    Article  CAS  Google Scholar 

  28. B. P. Mandal, A. K. Biswas and S. S. Bandyopadhyay, Chem. Eng. Sci., 58, 4137 (2003).

    Article  CAS  Google Scholar 

  29. D. Fu, H. Hao and F. Liu, J. Mol. Liq., 188, 37 (2013).

    Article  CAS  Google Scholar 

  30. F. A. Chowdhury, H. Yamada, T. Higashii, K. Goto and M. Onoda, Ind. Eng. Chem. Res., 52, 8323 (2013).

    Article  CAS  Google Scholar 

  31. P. D. Vaidya and E. Y. Kenig, Chem. Eng. Sci., 62, 7344 (2007).

    Article  CAS  Google Scholar 

  32. P. D. Vaidya and E. Y. Kenig, Chem. Eng. Technol., 32, 556 (2009).

    Article  CAS  Google Scholar 

  33. U. E. Aronu, H. F. Svendsen, K. A. Hoff and O. Juliussen, Energy Procedia, 1, 1051 (2009).

    Article  CAS  Google Scholar 

  34. D. Fu, L. Wang, C. Mi and P. Zhang, J. Chem. Thermodyn., 101, 123 (2016).

    Article  CAS  Google Scholar 

  35. I. Kim and H. F. Svendsen, Int. J. Greenh. Gas Control, 5, 390 (2011).

    Article  CAS  Google Scholar 

  36. U. Liebenthal, D. D. D. Pinto, J. G. M.-S. Monteiro, H. F. Svendsen and A. Kather, Energy Procedia, 37, 1844 (2013).

    Article  CAS  Google Scholar 

  37. Z. Xu, S. Wang and C. Chen, Ind. Eng. Chem. Res., 52, 9790 (2013).

    Article  CAS  Google Scholar 

  38. S. Kumar and M. K. Mondal, J. Chem. Eng. Data, 63, 1163 (2018).

    Article  CAS  Google Scholar 

  39. S. Kumar and M. K. Mondal, Korean J. Chem. Eng., 35, 1335 (2018).

    Article  CAS  Google Scholar 

  40. H. Gao, B. Xu, H. Liu and Z. Liang, Energy Fuels, 30, 7481 (2016).

    Article  CAS  Google Scholar 

  41. Y. Shen, C. Jiang, S. Zhang, J. Chen, L. Wang and J. Chen, Appl. Energy, 230, 726 (2018).

    Article  CAS  Google Scholar 

  42. S. Zhang, M. Du, P. Shao, L. Wang, J. Ye, J. Chen and J. Chen, Environ. Sci. Technol., 52, 12708 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. S. Zhang, Y. Shen, P. Shao, J. Chen and L. Wang, Environ. Sci. Technol., 52, 3660 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. J. Ye, C. Jiang, H. Chen, Y. Shen, S. Zhang, L. Wang and J. Chen, Environ. Sci. Technol., 53, 4470 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. S. Zhang, Y. Shen, L. Wang, J. Chen and Y. Lu, Appl. Energy, 239, 876 (2019).

    Article  CAS  Google Scholar 

  46. W. M. Budzianowski, Int. J. Global Warming, 7(2), 184 (2015).

    Article  Google Scholar 

  47. P. N. Sutar, P. D. Vaidya and E. Y. Kenig, Chem. Eng. Sci., 100, 234 (2013).

    Article  CAS  Google Scholar 

  48. W. Horwitz, Official methods of analysis of the association of official analytical chemists 13th Ed., Benjamin Franklin Station, Washington, USA (1980).

    Google Scholar 

  49. H. Gao, Z. Wu, H. Liu, X. Luo and Z. Liang, Energy Fuels, 31, 13883 (2017).

    Article  CAS  Google Scholar 

  50. J. I. Lee, F. D. Otto and A. E. Mather, J. Appl. Chem. Biotechnol., 26, 541 (1976).

    Article  CAS  Google Scholar 

  51. K.-P. Shen and M.-H. Li, J. Chem. Eng. Data, 37, 96 (1992).

    Article  CAS  Google Scholar 

  52. J.-H. Song, J.-H. Yoon and H. Lee, J. Chem. Eng. Data, 41, 497 (1996).

    Article  CAS  Google Scholar 

  53. S. Shen, Y. Yang, Y. Wang, S. Ren, J. Han and A. Chen, Fluid Phase Equilib., 399, 40 (2015).

    Article  CAS  Google Scholar 

  54. Y. Du, Y. Yuan and G. T. Rochelle, Chem. Eng. Sci., 155, 397 (2016).

    Article  CAS  Google Scholar 

  55. P. Singh and G. F. Versteeg, Process Saf. Environ. Prot., 86, 347 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Indian Institute of Technology (Banaras Hindu University) and Ministry of Human Resource Development (MHRD), India, for all the support to carry out the present research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monoj Kumar Mondal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Mondal, M.K. Selection of efficient absorbent for CO2 capture from gases containing low CO2. Korean J. Chem. Eng. 37, 231–239 (2020). https://doi.org/10.1007/s11814-019-0440-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0440-6

Keywords

Navigation