Skip to main content
Log in

Trisodium citrate-assisted synthesis of BiOBr nanostructure catalyst for efficient activity under visible light

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A simple one step wet-chemical method assisted by trisodium citrate was employed in the synthesis of BiOBr applied as a photocatalyst. Photocatalytic activity of the BiOBr was investigated for the degradation of Rhodamine B (RhB) dye under visible light irradiation (λ>420 nm). The results indicated that trisodium citrate is more favorable to the formation of hierarchical architectures and reduces the particle size of BiOBr photocatalyst. BiOBr with hierarchical architectures exhibiting significantly higher catalytic activity than that with ordinary nanostructure. The significant improvement could be attributed to the high specific surface area (24.14 m2·−1), average pore sizes (34.09 nm) and average pore volume (0.24 cm3·g−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. J. A. Moniz, S. A. Shevlin, D. J. Martin, Z. Guo and J. W. Tang, Energy Environ. Sci., 8, 731 (2015).

    Article  CAS  Google Scholar 

  2. M. Francavilla, A. Pineda, A. A. Romero, J. C. Colmenares, C. Vargas, M. Monteleone, R. Luque and M. Monteleone, Green Chem., 16, 2876 (2014).

    Article  CAS  Google Scholar 

  3. Z. F. Bian, J. Zhu, S. H. Wang, Y. Cao, X. F. Qian and H. X. Li, J. Phys. Chem. C, 112, 6258 (2008).

    Article  CAS  Google Scholar 

  4. R. P. Li, H. J. Ren, W. H. Ma, S. M. Hong, L. Wu and Y. P. Huang, Catal. Commun., 106, 1 (2017).

    Article  CAS  Google Scholar 

  5. J. Li, G. M. Zhan, Y. Yu and L. Z. Zhang, Nat. Commun., 7, 11480 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. P. Q. Wang, P. Yang, Y. Bai, T. Chen, X. Shi, L. Ye and X. Zhang, J. Taiwan Inst. Chem. Engineers, 68, 295 (2016).

    Article  CAS  Google Scholar 

  7. Z. Liu, X. X. Xu, J. Z. Fang, X. M. Zhu, J. H. Chu and B. J. Li, Appl. Surf. Sci., 258, 3771 (2012).

    Article  CAS  Google Scholar 

  8. I. Jang, K. E. You, Y. C. Kim and S. G. Oh, Appl. Surf. Sci., 316, 187 (2014).

    Article  CAS  Google Scholar 

  9. R. Levinson, P. Berdahl and H. Akbari, Solar Energy Mater. Solar Cells, 89, 351 (2005).

    Article  CAS  Google Scholar 

  10. K. L. Zhang, C. M. Liu, F. Q. Huang, C. Zheng and W. D. Wang, Appl. Catal. B: Environ., 68, 125 (2006).

    Article  CAS  Google Scholar 

  11. Z. S. Liu, B. T. Wu, J. N. Niu, X. Huang and Y. B. Zhu, Appl. Surf. Sci., 288, 369 (2014).

    Article  CAS  Google Scholar 

  12. Y. Xu, S. C. Xu, S. Wang, Y. X. Zhang and G. H. Li, Dalton Trans, 43, 479 (2013).

    Article  Google Scholar 

  13. M. Shang, W. Z. Wang and L. Zhang, J. Hazard. Mater., 167, 803 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. A. G. Abraham, A. Manikandan, E. Manikandan, S. Vadivel, S. K. Jaganathan, A. Baykal and P. S. Renganathan, J. Magn. Magn. Mater., 452, 380 (2018).

    Article  CAS  Google Scholar 

  15. C. P. Sajan, S. Wageh, A. A. Al-Ghamdi, J. Yu and S. Cao, Nano Res., 9, 3 (2016).

    Article  CAS  Google Scholar 

  16. H. Y. Jeong, J. H. Lee and K. F. Hayes, Geochim. Cosmochim. Acta, 72, 493 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. O. Yamamoto, Int. J. Inorg. Mater., 3, 643 (2001).

    Article  CAS  Google Scholar 

  18. J. Li, Y. Yu and L. Z. Zhang, Nanoscale, 6, 8473 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. R. S. Yuan, R. B. Guan and J. T. Zheng, Scripta Materialia, 52, 1329 (2005).

    Article  CAS  Google Scholar 

  20. D. S. Kim, S. J. Han and S. Y. Kwak, J. Colloid Interface Sci., 316, 85 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. H. T. Wang, M. S. Shi, H. F. Yang, N. Chang, H. Zhang, Y. P. Liu, M. C. Lu, D. Ao and D. Q. Chu, Mater. Lett., 222, 164 (2018).

    Article  CAS  Google Scholar 

  22. Z. Jiang, F. Yang, G. D. Yang, L. Kong, M. O. Jones, T. C. Xiao and P. P. Edwards, J. Photochem. Photobiol. A Chem., 212, 8 (2010).

    Article  CAS  Google Scholar 

  23. H. P. Li, J. Y. Liu, T. X. Hu, N. Du, S. E. Song and W. G. Hou, Mater. Res. Bull., 77, 171 (2016).

    Article  CAS  Google Scholar 

  24. Q. C. Liu, D. K. Ma, Y. Y. Hu, Y. W. Zeng and S. M. Huang, ACS Appl. Mater. Interfaces, 5, 11927 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. G. Q. Zhang, G. Q. Yang and J. S. Ma, Cryst. Growth Des., 6, 375 (2006).

    Article  CAS  Google Scholar 

  26. Q. H. Liang, W. J. Ma, Y. Shi, Z. Li and X. N. Yang, Crystengcomm, 14, 2966 (2012).

    Article  CAS  Google Scholar 

  27. X. Jiang, F. M. Wang, W. F. Cai and X. B. Zhang, J. Alloys Compd., 636, 34 (2015).

    Article  CAS  Google Scholar 

  28. Z. F. Huang, Y. Zhao, Y. H. Song, Y. H. Zhao and J. Z. Zhao, Colloids Surf., A, Physicochem. Eng. Aspects, 516, 106 (2017).

    Article  CAS  Google Scholar 

  29. S. B. Zhu, X. Tian, J. J. Chen, L. M. Shan, X. L. Xu and Z. W. Zhou, J. Phys. Chem. C, 118, 16401 (2013).

    Article  CAS  Google Scholar 

  30. K. Zhang, J. Liang, S. Wang, J. Liu, K. X. Ren, X. Zheng, H. Luo, Y. J. Peng, X. Zou, X. Bo, J. H. Li and X. B. Yu, Cryst. Growth Des., 12, 793 (2012).

    Article  CAS  Google Scholar 

  31. K. X. Ren, K. Zhang, J. Liu, H. D. Luo, Y. B. Huang and X. B. Yu, Crystengcomm, 14, 4384 (2012).

    Article  CAS  Google Scholar 

  32. T. Trindade, J. D. P. de Jesus and P. O’Brien, J. Mater. Chem., 4, 1611 (1994).

    Article  CAS  Google Scholar 

  33. H. P. Li, T. X. Hu, N. Du, R. J. Zhang, J. Q. Liu and W. G. Hou, Appl. Catal. B Environ., 187, 342 (2016).

    Article  CAS  Google Scholar 

  34. X. Y. Xiong, L. Y. Ding, Q. Q. Wang, Y. X. Li, Q. Q. Jiang and J. C. Hu, Appl. Catal. B Environ., 188, 283 (2016).

    Article  CAS  Google Scholar 

  35. M. L. Guan, C. Xiao, J. Zhang, S. J. Fan, R. An, Q. M. Cheng, J. F. Xie, M. Zhou, B. J. Ye and Y. Xie, J. Am. Chem. Soc., 135, 10411 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. H. Li, J. Shang, Z. H. Ai and L. Z. Zhang, J. Am. Chem. Soc., 137, 6393 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. W. T. Li, Y. B. Zou, X. Geng, F. Xiao, G. Y. An and D. S. Wang, Mol. Catal., 438, 19 (2017).

    Article  CAS  Google Scholar 

  38. Y. Bai, P. Q. Wang, J. Y. Liu and X. J. Liu, Rsc Adv., 4, 19456 (2014).

    Article  CAS  Google Scholar 

  39. D. D. Han, P. C. Xu, X. Y. Jing, J. Wang, P. P. Yang, Q. H. Shen, J. Y. Liu, D. L. Song, Z. Gao and M. L. Zhang, J. Power Sources, 235, 45 (2013).

    Article  CAS  Google Scholar 

  40. W. Y. Li and H. Y. Wu, Chem. Phys. Lett., 686, S0009261417308072 (2017).

    Google Scholar 

  41. F. Vaquero, R. M. Navarro and J. L. G. Fierro, Appl. Catal. B Environ., 203 (2016).

  42. K. Li, Y. J. Liang, J. Yang, Q. Gao, Y. L. Zhu, S. Q. Liu, R. Xu and X. Y. Wu, J. Alloys Compd., 695, 238 (2017).

    Article  CAS  Google Scholar 

  43. C. T. Yang, W. W. Lee, H. P. Lin, Y. M. Dai, H. T. Chi and C. C. Chen, Rsc Adv., 6, 40664 (2016).

    Article  CAS  Google Scholar 

  44. B. Liu, L. M. Liu, X. F. Lang, H. Y. Wang, X. W. Lou and E. S. Aydil, Energy Environ. Sci., 7, 2592 (2014).

    Article  CAS  Google Scholar 

  45. J. Yang, Y. J. Liang, K. Li, G. Yang, Y. L. Zhu, S. Q. Liu and W. Lei, Appl. Surf. Sci., 458, 769 (2018).

    Article  CAS  Google Scholar 

  46. X. Zhang, Z. H. Ai, F. L. A. Jia and L. Zhang, J. Phys. Chem. C, 112, 747 (2008).

    Article  CAS  Google Scholar 

  47. Y. Ohko, K. Hashimoto and A. Fujishima, J. Phys. Chem. A, 101, 8057 (1997).

    Article  CAS  Google Scholar 

  48. X. C. Meng and Z. S. Zhang, J. Mol. Catal. A Chem., 423, 533 (2016).

    Article  CAS  Google Scholar 

  49. H. Bai, W. Yi, J. Li, G. Xi, Y. Li, H. Yang and J. Y. Liu, J. Mater. Chem. A, 4, 1566 (2016).

    Article  CAS  Google Scholar 

  50. S. Patnaik, G. Swain and K. M. Parida, Nanoscale, 10, 5950 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. P. Jimlim, T. Bovornratanaraks, W. Chaimayo and S. Pratontep, Mod. Phys. Lett. B, 25, 2399 (2011).

    Article  CAS  Google Scholar 

  52. A. Younis, D. Chu, Y. K. Kanetio and S. Li, Nanoscale, 8, 378 (2015).

    Article  CAS  Google Scholar 

  53. Y. G. Xu, Y. Ma, X. Y. Ji, S. Q. Huang, J. X. Xia, M. Xie, J. Yan, H. Xu and H. M. Li, Appl. Surf. Sci., 464, 552 (2019).

    Article  CAS  Google Scholar 

  54. Y. Y. Ma, Q. Han, F. X. Wang and J. W. Zhu, Mater. Res. Bull., 101, 272 (2018).

    Article  CAS  Google Scholar 

  55. B. F. Xin, Z. Y. Ren, H. Y. Hu, X. Y. Zhang, C. L. Dong, K. Y. Shi, L. Q. Jing and H. G. Fu, Appl. Surf. Sci., 252, 2050 (2005).

    Article  CAS  Google Scholar 

  56. K. M. Garadkar, L. A. Ghule, K. B. Sapnar and S. D. Dhole, Mater. Res. Bull., 48, 1105 (2013).

    Article  CAS  Google Scholar 

  57. J. M. Meichtry, N. Quici, G. Mailhot and M. I. Litter, Appl. Catal. B Environ., 102, 454 (2011).

    Article  CAS  Google Scholar 

  58. P. Y. Song, M. Xu and W. D. Zhang, Mater. Res. Bull., 62, 88 (2015).

    Article  CAS  Google Scholar 

  59. L. Zhang, X. F. Cao, X. T. Chen and Z. L. Xue, J. Colloid Interface Sci., 354, 630 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Y. N. Huo, Y. Jin and Y. Zhang, J. Mol. Catal. A: Chem., 331, 15 (2010).

    Article  CAS  Google Scholar 

  61. L. Q. Ye, Y. R. Su, X. L. Jin, H. Q. Xie, F. P. Cao and Z. Guo, Appl. Surf. Sci., 311, 858 (2014).

    Article  CAS  Google Scholar 

  62. X. L. Hu, Y. Q. Xu, H. K. Zhu, F. N. Hua and S. F. Zhu, Mater. Sci. Semicond. Process., 41, 12 (2016).

    Article  CAS  Google Scholar 

  63. L. X. Fang, B. L. Zhang, W. Li, X. J. Li, T. J. Xin and Q. Y. Zhang, Superlattices Microstruct., 75, 324 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Open Project Program of Fujian Key Laboratory of Novel Functional Textile Fibers and Materials (Minjiang University), China (No. FKLTFM1708), the Fujian Engineering Research Center of New Chinese lacquer Material (Minjiang University), China (No. 323030010301), the authors humbly acknowledge international funding provided by Fujian Agriculture and Forestry University (No. KXB16001A) and the Department of Science and Technology of Fujian Province (No. 2017H6003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liwei Wang or Zhanhui Yuan.

Additional information

Conflict of Interest

The authors have no conflict of interest with regards to the submission and publication of this article.

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Jiang, Y., Sun, S. et al. Trisodium citrate-assisted synthesis of BiOBr nanostructure catalyst for efficient activity under visible light. Korean J. Chem. Eng. 37, 358–365 (2020). https://doi.org/10.1007/s11814-019-0425-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0425-5

Keywords

Navigation