Skip to main content
Log in

Modeling respiration rates of Ipomoea batatas (sweet potato) under hermetic storage system

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The sweet potato respiration rate versus gas composition was mathematically modeled, as required to design an effective modified atmosphere packaging (MAP) system. Storage tests of sweet potato were conducted at 15–30 °C. The O2 and CO2 concentrations were measured over time in a closed system. The respiration rate was estimated to be a derivative of the quadratic function of gas concentration over time and decreased with decreasing O2 and increasing CO2. The model of the uncompetitive inhibition enzyme reaction rate fitted well with the experimental results. The temperature dependency of the equation parameters (Vm, Km, and Ki) followed the Arrhenius relationships. The use of the proposed models to simulate the respiration rates as a function of temperature revealed less temperature dependence in low O2 and high CO2 concentrations. This gas composition, more desirable in practice, also agreed with the typical gas composition of MAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

\({\text{R}}_{{{\text{O}}_{2} }}\) :

O2 consumption respiration rate (mL kg−1 h−1)

\({\text{R}}_{{{\text{CO}}_{2} }}\) :

CO2 evolution respiration rate (mL kg−1 h−1)

\({\text{V}}_{{{\text{m}}, \left( {{\text{O}}_{2} } \right)}}\) :

Maximum respiration rate for O2 consumption (mL kg−1 h−1)

\({\text{V}}_{{{\text{m}}, \left( {{\text{CO}}_{2} } \right)}}\) :

Maximum respiration rate for CO2 evolution (mL kg−1 h−1)

\({\text{K}}_{{{\text{m}}, \left( {{\text{O}}_{2} } \right)}}\) :

Michaelis–Menten constant for O2 consumption (%O2)

\({\text{K}}_{{{\text{m}}, \left( {{\text{CO}}_{2} } \right)}}\) :

Michaelis–Menten constant for CO2 evolution (%O2)

\({\text{K}}_{{{\text{i}}, \left( {{\text{O}}_{2} } \right)}}\) :

Inhibition constant for O2 consumption (%CO2)

\({\text{K}}_{{{\text{i}}, \left( {{\text{CO}}_{2} } \right)}}\) :

Inhibition constant for CO2 evolution (%CO2)

\(\left[ {{\text{O}}_{2} } \right]\) :

O2 concentration (%O2)

\(\left[ {{\text{CO}}_{2} } \right]\) :

CO2 concentration (%CO2)

\({\text{R}}_{\text{m}}\) :

Model parameter of Michaelis–Menten equation

Ea :

Arrhenius activation energy

R:

Universal gas constant (8.314 kJ mol−1)

T:

Absolute temperature (K)

V:

Free volume of respiration chamber (mL)

W:

Weight of sweet potatoes (g)

a:

Regression coefficient

b:

Regression coefficient

MRD:

Mean relative deviation modulus (%)

Rexp :

Experimental respiration rate (mL kg−1 h−1)

Rpre :

Predicted respiration rate (mL kg−1 h−1)

N:

Number of respiration data points

References

  • A.O.A.C. Official method of analysis of AOAC international. 14th ed. Association of Official Analytical Chemists, Washington, USA (1975)

  • Ahn GH, Lee DS. Enzyme kinetics based modeling of respiration rate for ‘Fuyu’ persimmon (Diospyros kaki) fruits. Korean J. Food Sci. Technol. 36: 580-585 (2004)

    Google Scholar 

  • Beaudry RM, Cameron AC, Shirazi A, Dostal-Lange DL. Modified atmosphere packaging of blueberry fruit: effect of temperature on package O2 and CO2. J. Am. Soc. Hortic. Sci. 117: 436-441 (1992)

    Article  Google Scholar 

  • Beaudry RM. Responses of horticultural commodities to low oxygen: limits to the expanded use of modified atmosphere packaging. HortTechnology 10: 491-500 (2000)

    Article  Google Scholar 

  • Bhande SD, Ravindra MR, Goswami TK. Respiration rate of banana fruit under aerobic conditions at different storage temperatures. J. Food Eng. 87: 116-123 (2008)

    Article  Google Scholar 

  • Chakraborty C, Roychowdhury R, Chakraborty S, Chakravorty P, Ghosh D. A review on post-harvest profile of sweet potato. Int. J. Curr. Microbiol. App. Sci. 6: 1894-1903 (2017)

    Article  CAS  Google Scholar 

  • Dash KK, Ravindra MR, Goswami TK. Modeling of respiration rate of SAPOTA fruit under aerobic conditions. J. Food Process Eng. 32: 528-543 (2007)

    Article  Google Scholar 

  • Emond JP, Chau KV, Brecht JK. Modeling respiration rates of blueberry in a perforation-generated modified atmosphere package. pp. 134-144. In: Proceedings from the Sixth International Controlled Atmosphere Research Conference. Blanpied GD, Barstch JA, Hicks JR (eds). Cornell University, Ithaca, New York (1993)

  • Exama A, Arul J, Lencki RW, Lee LZ, Toupin C. Suitability of plastic films for modified atmosphere packaging of fruits and vegetables. J. Food Sci. 58: 1365-1370 (1993)

    Article  CAS  Google Scholar 

  • Fonseca SC, Oliveira FAR, Brecht JK. Modelling respiration rate of fresh fruits and vegetables for modified atmosphere packages: a review. J. Food Eng. 52: 99-119 (2002)

    Article  Google Scholar 

  • Gong S, Corey KA. Predicting steady state oxygen concentrations in modified atmosphere packages of tomatoes. J. Am. Soc. Hortic. Sci. 119: 546-550 (1994)

    Article  Google Scholar 

  • Gunes G, Lee CY. Color of minimally processed potatoes as affected by modified atmosphere packaging and antibrowning agents. J. Food Sci. 62: 572-575 (2006)

    Article  Google Scholar 

  • Henig YS, Gilbert SG. Computer analysis of the variables affecting respiration and quality of produce packaged in polymeric packaging films. J. Food Sci. 40: 123-125 (1975)

    Article  Google Scholar 

  • Horton D, Prain G, Gregory P. High-level investment for international R&D. CIP Circ. 17(3): 1-11 (1989)

    Google Scholar 

  • James ML. Chilling injury in plants. Ann. Rev. Plant Physiol. 24: 445-466 (1973)

    Article  Google Scholar 

  • Kubo Y, Inaba A, Nakamura R. Extinction point and critical oxygen concentration in various fruits and vegetables. J. Jpn. Soc. Hortic. Sci. 65: 397-402 (1996)

    Article  CAS  Google Scholar 

  • Kwon HR, Lee DS. Respiration characteristics of five Korean fresh vegetables. Food Sci. Biotechnol. 3: 209-211 (1994)

    Google Scholar 

  • Kwon HR, Lee DS. Modified atmosphere packaging of precut and prepared vegetables. Food Sci. Biotechnol. 4: 169-173 (1995)

    Google Scholar 

  • Lai WH, Kek SL, Tay KG. Solving nonlinear least squares problem using gauss-newton method. Int. J. Innov. Res. Sci. Eng. Technol. 4: 258-262 (2017)

    Google Scholar 

  • Lee DS, Hagger PE, Lee J, Yam KL. Model for fresh produce respiration in modified atmosphere based on principles of enzyme kinetics. J. Food Sci. 56: 1580-1585 (1991)

    Article  CAS  Google Scholar 

  • Lee DS. Modeling fresh produce respiration and designing modified atmosphere package. J. Korea Soc. Pack. Sci. Technol. 13: 113-120 (2007)

    Google Scholar 

  • Lee DS, Lee KS, Park IS, Yam KL. Analysis of respiration characteristics of low CO2 tolerance produces for designing modified atmosphere package. Food Biotechnol. 3: 99-103 (1994)

    CAS  Google Scholar 

  • Lee JJ, Lee DS. A dynamic test for kinetic model of fresh produce respiration in modified atmosphere and its application to packaging of prepared vegetables. Food Sci. Biotechnol. 5: 343-348 (1996)

    Google Scholar 

  • Lomauro GJ, Bakshi AS, Labuza TP. Evaluation of food moisture sorption isotherm equations. Part I. Fruit, vegetables and meat products. Lebensm. Wiss. Technol. 18: 111-117 (1985)

  • Mahajan PV, Goswami T. Enzyme kinetics based modelling of respiration rate for apple. J. Agr. Eng. Res. 79: 399-406 (2001)

    Article  Google Scholar 

  • McLaughlin CP, O’Beirne D. Respiration rate of a dry coleslaw mix as affected by storage temperature and respiratory gas concentrations. J. Food Sci. 64: 116-119 (1999)

    Article  CAS  Google Scholar 

  • Mtunda K, Chilosa D, Rwiza E, Kilima M, Munisi R, Kapinga R, Rees D. Damage reduces shelf-life of sweetpotato during marketing. Afr. Crop Sci. J. 9: 301-307 (2001)

    Article  Google Scholar 

  • Padda MS, Picha DH. Effect of low temperature storage on phenolic composition and antioxidant activity of sweet potatoes. Postharvest Biol. Technol. 47: 176-180 (2007)

    Article  Google Scholar 

  • Picha DH. Chilling injury, respiration and sugar changes in sweetpotatoes stored at low temperature. J. Am. Soc. Hortic. Sci. 112: 497-502 (1987)

    CAS  Google Scholar 

  • Ray RC, Ravi V. Post harvest spoilage of sweet potato in tropics and control measures. Crit. Rev. Food Sci. Nutr. 45: 623-644 (2005)

    Article  CAS  Google Scholar 

  • Ray RC, Roy Chowdhury S, Balagopalan C. Minimizing weight loss and microbial rotting of sweetpotatoes (Ipomoea batatas L.) in storage under tropical ambient conditions. Adv. Hort. Sci. 8: 159-163 (1994)

  • Rees D, Kapinga R, Mtunda K, Chilosa D, Rwiza E, Kilima M, Kiozya H, Munisi R. Effect of damage on market value and shelf-life of sweetpotato in urban markets of Tanzania. Trop. Sci. 41: 142-150 (2001)

    Google Scholar 

  • Sowley ENK, Oduro KA. Effectiveness of curing in controlling fungal-induced storage rot in sweetpotato in Ghana. Trop. Sci. 42: 6-10 (2002)

    Google Scholar 

  • Yang CC, Chinnan MS. Modeling the effect of O2 and CO2 on respiration and quality of stored tomatoes. Trans. Am. Soc. Agr. Eng. 31: 920-925 (1988)

    Article  Google Scholar 

  • Yam KL, Lee DS. Design of modified atmosphere packaging for fresh produce. pp. 55-73. In: Active Food Packaging. Rooney ML (ed). Springer, Boston (1995)

Download references

Acknowledgements

This research was supported by the Ministry of Agriculture, Food and Rural Affairs (No. S-2018-A0436-00004), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Ju Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S.H., Jang, H.D. & Lee, S.J. Modeling respiration rates of Ipomoea batatas (sweet potato) under hermetic storage system. Food Sci Biotechnol 29, 227–234 (2020). https://doi.org/10.1007/s10068-019-00660-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-019-00660-2

Keywords

Navigation