Skip to main content
Log in

Influences of Interactive Effect Between ZrO2 and Nano-SiO2 on the Formation of 1,3-Butadiene from Ethanol and Acetaldehyde

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

This paper has systematically investigated the structures and properties of the ZrO2, Nano-SiO2 and their composition. The catalysts were prepared by impregnation, characterized by N2 adsorption–desorption, TEM, XRD, Raman, temperature-programmed desorption of NH3 and CO2, FTIR spectroscopy of adsorbed pyridine and CO2, and UV–vis spectra. Compared with dry-mixed samples, these catalysts have larger average pore diameter, enabling ZrO2 to be dispersed more uniformly on the surface of Nano-SiO2. With the Zr–O–Si bonds, ZrO2 could interact intensely with Nano-SiO2. The catalyst prepared shows the best performance, with the selectivity of 93.18% and conversion of 58.52%. The preparation methods have a significant influence on the interaction between ZrO2 and Nano-SiO2, which then affects the acid–basic properties. This paper finds that weak acid–basic sites with moderate-intensity are more suitable for ethanol conversion to BD, with the amount of acid and basic sites as close as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Haveren JV, Scott EL, Sanders J (2008) Bulk chemicals from biomass. Biofuels Bioprod Biorefin 2:41–57

    Article  Google Scholar 

  2. Angelici C, Weckhuysen BM, Bruijnincx PC (2013) Chemocatalytic conversion of ethanol into butadiene and other bulk chemicals. ChemSusChem 6:1595–1614

    Article  CAS  Google Scholar 

  3. Baylon RAL, Sun J, Wang Y (2016) Conversion of ethanol to 1,3-butadiene over Na doped ZnxZryOz mixed metal oxides. Catal Today 259:446–452

    Article  CAS  Google Scholar 

  4. Chung S-H, Angelici C, Hinterding SOM, Weingarth M, Baldus M, Houben K, Weckhuysen BM, Bruijnincx PCA (2016) Role of magnesium silicates in wet-kneaded silica–magnesia catalysts for the Lebedev ethanol-to-butadiene process. ACS Catal 6:4034–4045

    Article  CAS  Google Scholar 

  5. Jones MD, Keir CG, Iulio CD, Robertson RAM, Williams CV, Apperley DC (2011) Investigations into the conversion of ethanol into 1,3-butadiene. Catal Sci Technol 1:267–272

    Article  CAS  Google Scholar 

  6. Sushkevich VL, Ivanova II (2017) Mechanistic study of ethanol conversion into butadiene over silver promoted zirconia catalysts. Appl Catal B Environ 215:36–49

    Article  CAS  Google Scholar 

  7. Yan T, Dai W, Wu G, Lang S, Hunger M, Guan N, Li L (2018) Mechanistic insights into one-step catalytic conversion of ethanol to butadiene over bifunctional Zn–Y/beta zeolite. ACS Catal 8(4):2760–2773

    Article  CAS  Google Scholar 

  8. Huang X, Men Y, Wang J, An W, Wang Y (2017) Highly active and selective binary MgO-SiO2 catalysts for the production of 1,3-butadiene from ethanol. Catal Sci Technol 7(1):168–180

    Article  CAS  Google Scholar 

  9. Sanchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295

    Article  CAS  Google Scholar 

  10. Lv H, Sun Y, Zhang M, Geng Z, Ren M (2012) Removal of acetic acid from fuel ethanol using ion-exchange resin. Energy Fuels 26:7299–7307

    Article  CAS  Google Scholar 

  11. Corson EJBB, Welling CE, Hinckley JA, Stahly EE (1950) Butadiene from ethyl alcohol. Ind Eng Chem Res 42:359–372

    Article  CAS  Google Scholar 

  12. Toussaint JTDWJ, Jackson DR (1947) Production of butadiene from alcohol. Ind Eng Chem Res 39:120–125

    Article  CAS  Google Scholar 

  13. Tsuchida T, Sakuma S, Takeguchi T, Ueda W (2006) Direct synthesis ofn-butanol from ethanol over nonstoichiometric hydroxyapatite. Ind Eng Chem Res 45:8634–8642

    Article  CAS  Google Scholar 

  14. Zhang M, Gao M, Chen J, Yu Y (2015) Study on key step of 1,3-butadiene formation from ethanol on MgO/SiO2. RSC Adv 5:25959–25966

    Article  CAS  Google Scholar 

  15. Makshina EV, Dusselier M, Janssens W, Degreve J, Jacobs PA, Sels BF (2014) Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene. Chem Soc Rev 43:7917–7953

    Article  CAS  Google Scholar 

  16. Li S, Men Y, Wang J, Liu S, Wang X, Ji F, Song Q (2019) Morphological control of inverted MgO-SiO2 composite catalysts for efficient conversion of ethanol to 1,3-butadiene. Appl Catal A Gen 577:1–9

    Article  Google Scholar 

  17. Da Ros S, Jones MD, Mattia D, Schwaab M, Noronha FB, Pinto JC (2017) Modelling the effects of reaction temperature and flow rate on the conversion of ethanol to 1,3-butadiene. Appl Catal A Gen 530:37–47

    Article  Google Scholar 

  18. Dai WL, Zhang SS, Yu ZY (2017) Zeolite structural confinement effects enhance one-pot catalytic conversion of ethanol to butadiene. ACS Catal 7(5):3703–3706

    Article  CAS  Google Scholar 

  19. Yan T, Yang L, Dai W, Wang C, Wu G, Guan N, Li L (2018) On the deactivation mechanism of zeolite catalyst in ethanol to butadiene conversion. J Catal 367:7–15

    Article  CAS  Google Scholar 

  20. Chagas LH, Matheus CRV, Zonetti PC (2018) Butadiene from ethanol employing doped t-ZrO2. Mol Catal 458:272–279

    Article  CAS  Google Scholar 

  21. Chagas LH, Zonetti PC, Matheus CRV, Rabello CRK, Alves OC, Appel LG (2019) The role of the oxygen vacancies in the synthesis of 1, 3-butadiene from ethanol. ChemCatChem 11(22):5625–5632. https://doi.org/10.1002/cctc.201901243

    Article  CAS  Google Scholar 

  22. Han Z, Li X, Zhang M, Liu Z, Gao M (2015) Sol–gel synthesis of ZrO2–SiO2 catalysts for the transformation of bioethanol and acetaldehyde into 1,3-butadiene. RSC Adv 5:103982–103988

    Article  CAS  Google Scholar 

  23. Gao M, Jiang H, Zhang M (2018) The influence of calcination temperatures on the acid-based properties and catalytic activity for the 1,3-butadiene synthesis from ethanol/acetaldehyde mixture. Appl Surf Sci 439:1072–1078

    Article  CAS  Google Scholar 

  24. Gao M, Zhang M, Jiang H (2018) 1,3-Butadiene production from bioethanol and acetaldehyde over zirconium oxide supported on series silica catalysts. Catal Surv Asia 22:118–122

    Article  CAS  Google Scholar 

  25. Huang YX, Wang C (2010) Raman spectra quantitative analysis on materials with strong fluorescence background. Spectrosc Spectr Anal 30(7):1798–1801

    Google Scholar 

  26. Lopez JNT, Gomez R, Novaro O, Figueras F, Armendariz H (1995) Preparation of sol-gel sulfated ZrO2-SiO2 and characterization of its surface acidity. Appl Catal A Gen 125:217–232

    Article  CAS  Google Scholar 

  27. Francisco del Monte WL, Mackenzie JD (2000) Chemical interactions promoting the ZrO2 Tetragonal Stabilization in ZrO2-SiO2 Binary Oxides. J Am Ceram Soc 83:1506–1512

    Article  Google Scholar 

  28. Chandradass J, Han K-S, Bae D-S (2008) Synthesis and characterization of zirconia- and silica-doped zirconia nanopowders by oxalate processing. J Mater Process Technol 206:315–321

    Article  CAS  Google Scholar 

  29. Di Cosimo VKD, Xu M, Iglesia E, Apesteguía CR (1998) Structure and surface and catalytic properties of Mg-Al basic oxides. J Catal 178:499–510

    Article  Google Scholar 

  30. Xu WQ, Suib SL, Oyoung CL (1993) Studies of acidic sites on boralites by temperature-programmed desorption (TPD) of NH3, C2H4, and 1-C4H8. J Catal 144(1):285–295

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the Key Laboratory for Green Chemical Technology of Ministry of Education and the Collaborative Innovation Center of Chemical Science and Engineering, for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meixiang Gao or Minhua Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, M., Jiang, H. & Zhang, M. Influences of Interactive Effect Between ZrO2 and Nano-SiO2 on the Formation of 1,3-Butadiene from Ethanol and Acetaldehyde. Catal Surv Asia 24, 115–122 (2020). https://doi.org/10.1007/s10563-020-09292-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-020-09292-7

Keywords

Navigation