Skip to main content
Log in

Polyethyleneimine-oleic acid micelle-stabilized gold nanoparticles for reduction of 4-nitrophenol with enhanced performance

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Noble metal nanoparticles have been drawing great attention for the treatment of water pollutants. The catalytic activity of noble metal nanoparticles is usually reduced due to their aggregation. Amphiphilic molecule micelles have potential to stabilize the noble nanoparticles against aggregation. In this study, a novel facile method was reported for preparing polyethyleneimine-oleic acid (PEI-oleic acid) micelle-stabilized gold nanoparticles (PO-AuNPsn), where the gold nanoparticles (AuNPs) were embedded in the shell area of micelles. When the molar ratio of [N] to [Au] was 50, 100, and 200, the mean diameter of AuNPs was 3.52 ± 0.42, 3.11 ± 0.28, and 2.85 ± 0.48 nm, respectively. The corresponding zeta potential of the PO-AuNPsn was determined to be 26.2, 28.9 and 35.7 mV, respectively. Furthermore, PO-AuNPsn remained stable in aqueous solution at room temperature for more than 1 month. More importantly, PO-AuNPsn had higher catalytic activity for 4-nitrophenol (4-NP) reduction in aqueous solution compared with previous reports, where PO-AuNPs200 showed a Knor value of 9367 s−1 g−1. It is believed that PO-AuNPsn showed high catalytic activity because of their small size, high stability, and the location of AuNPs in the shell area, which made it easier for AuNPs to contact with 4-NP. The method described in this report represents a new method to prepare small and stable noble metal nanoparticles for catalytic applications in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Feng Y, Jiao T, Yin J, Zhang L, Zhang L, Zhou J, Peng Q (2019) Nanoscale Res Lett 14:78

    Article  Google Scholar 

  2. Guo X, Zhang J, Cui Y, Chen S, Sun H, Yang Q, Ma G, Wang L, Kang J (2019) New J Chem 43:7646–7652

    Article  CAS  Google Scholar 

  3. Ma M, Yang Y, Li W, Feng R, Li Z, Lyu P, Ma Y (2018) J Mater Sci 54:323–334

    Article  Google Scholar 

  4. Wang C, Yin J, Han S, Jiao T, Bai Z, Zhou J, Zhang L, Peng Q (2019) Catalysts 9:559

    Article  CAS  Google Scholar 

  5. Sun S-P, Lemley AT (2011) J Mol Catal A Chem 349:71–79

    Article  CAS  Google Scholar 

  6. Hao Y, Shao X, Li B, Hu L, Wang T (2015) Mater Sci Semicond Process 40:621–630

    Article  CAS  Google Scholar 

  7. Zhang H, Xin X, Sun J, Zhao L, Shen J, Song Z, Yuan S (2016) J Colloid Interface Sci 484:97–106

    Article  CAS  Google Scholar 

  8. Yu S, Cui Y, Guo X, Chen S, Sun H, Wang L, Wang J, Zhao Y, Liu Z (2019) New J Chem 43:8774–8780

    Article  CAS  Google Scholar 

  9. Guo X, Suo Y, Zhang X, Cui Y, Chen S, Sun H, Gao D, Liu Z, Wang L (2019) Analyst 144:5179–5185

    Article  CAS  Google Scholar 

  10. Cui Y, Liang B, Zhang J, Wang R, Sun H, Wang L, Gao D (2019) Transit Metal Chem. https://doi.org/10.1007/s11243-019-00330-6

    Article  Google Scholar 

  11. Fedorczyk A, Ratajczak J, Kuzmych O, Skompska M (2015) J Solid State Electrochem 19:2849–2858

    Article  CAS  Google Scholar 

  12. Ma T, Yang W, Liu S, Zhang H, Liang F (2017) Catalysts 7:38–48

    Article  Google Scholar 

  13. Li N, Zhao P, Astruc D (2014) Angew Chem Int Ed Engl 53:1756–1789

    Article  CAS  Google Scholar 

  14. Cui Y, Zhang J, Yu Q, Guo X, Chen S, Sun H, Liu S, Wang L, Lai X, Gao D (2019) New J Chem 43:9076–9083

    Article  CAS  Google Scholar 

  15. Xu M, Qian J, Suo A, Liu T, Liu X, Wang H (2015) Polym Chem 6:2445–2456

    Article  CAS  Google Scholar 

  16. Liu Y, Fan Y, Yuan Y, Chen Y, Cheng F, Jiang S-C (2012) J Mater Chem 22:21173–21182

    Article  CAS  Google Scholar 

  17. Dai Y, Li Y, Wang S (2015) J Catal 329:425–430

    Article  CAS  Google Scholar 

  18. Dai Y, Yu P, Zhang X, Zhuo R (2016) J Catal 337:65–71

    Article  CAS  Google Scholar 

  19. Dastan D (2017) Appl Phys A 123:1–13

    Article  CAS  Google Scholar 

  20. Dastan D, Banpurkar A (2016) J Mater Sci Mater Electron 28:3851–3859

    Article  Google Scholar 

  21. Dastan D, Gosavi SW, Chaure NB (2015) Macromol Symp 347:81–86

    Article  CAS  Google Scholar 

  22. Antonietti L, Aymonier C, Schlotterbeck U, Garamus V, Maksimova TV, Richtering W, Mecking S (2005) Macromolecules 38:5914–5920

    Article  CAS  Google Scholar 

  23. Pineiro L, Novo M, Al-Soufi W (2015) Adv Colloid Interface 215:1–12

    Article  CAS  Google Scholar 

  24. Pal A, Chaudhary S (2013) Colloid Surf A 430:58–64

    Article  CAS  Google Scholar 

  25. Panahi SL, Dastan D, Chaure NB (2016) Adv Sci Lett 22:941–944

    Article  Google Scholar 

  26. Dastan D, Leila Panahi S, Yengntiwar AP, Banpurkar AG (2016) Adv Sci Lett 22:950–953

    Article  Google Scholar 

  27. Dastan D, Londhe PU, Chaure NB (2014) J Mater Sci Mater Electron 25:3473–3479

    Article  CAS  Google Scholar 

  28. Dastan D, Chaure NB (2014) Int J Mater Mech Manuf 2:21–24

    CAS  Google Scholar 

  29. Dastan D (2015) J At Mol Condens NanoPhys 2:109–114

    Google Scholar 

  30. Lam E, Hrapovic S, Majid E, Chong JH, Luong JH (2012) Nanoscale 4:997–1002

    Article  CAS  Google Scholar 

  31. Dastan D, Chaure N, Kartha M (2017) J Mater Sci Mater Electron 28:7784–7796

    Article  CAS  Google Scholar 

  32. Dastan D, Panahi SL, Chaure NB (2016) J Mater Sci Mater Electron 27:12291–12296

    Article  CAS  Google Scholar 

  33. Santoshi Kumari A, Venkatesham M, Ayodhya D, Veerabhadram G (2014) Appl Nanosci 5:315–320

    Article  Google Scholar 

  34. Gu S, Kaiser J, Marzun G, Ott A, Lu Y, Ballauff M, Zaccone A, Barcikowski S, Wagener P (2015) Catal Lett 145:1105–1112

    Article  CAS  Google Scholar 

  35. Li J, Liu C-Y, Liu Y (2012) J Mater Chem 22:8426

    Article  CAS  Google Scholar 

  36. Wang Y, Wei G, Zhang W, Jiang X, Zheng P, Shi L, Dong A (2007) J Mol Catal A Chem 266:233–238

    Article  CAS  Google Scholar 

  37. Ye W, Yu J, Zhou Y, Gao D, Wang D, Wang C, Xue D (2016) Appl Catal B Environ 181:371–378

    Article  CAS  Google Scholar 

  38. Guo M, He J, Li Y, Ma S, Sun X (2016) J Hazard Mater 310:89–97

    Article  CAS  Google Scholar 

  39. Gu S, Wunder S, Lu Y, Ballauff M, Fenger R, Rademann K, Jaquet B, Zaccone A (2014) J Phys Chem C 118:18618–18625

    Article  CAS  Google Scholar 

  40. Zhou R, Yang X, Zhang P, Yang L, Liu C, Liu D, Gui J (2018) Phys Chem Chem Phys 20:27730–27734

    Article  CAS  Google Scholar 

  41. Zhang Z, Shao C, Sun Y, Mu J, Zhang M, Zhang P, Guo Z, Liang P, Wang C, Liu Y (2012) J Mater Chem 22:1387–1395

    Article  CAS  Google Scholar 

Download references

Funding

The authors appreciate financial support from Natural Science Foundation of Hebei Province (B2017203229), Youth Foundation Project supported by the Hebei Education Department of China (QN2015034), China Postdoctoral Science Foundation (2016M601284), the national development project on key basic research (973 Project, 2015CB655303), the National Nature Science Foundation of China (21474085, 21674092), and Anhui Provincial Natural Science Foundation (1808085ME143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanshuai Cui.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 255 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhang, X., Cui, Y. et al. Polyethyleneimine-oleic acid micelle-stabilized gold nanoparticles for reduction of 4-nitrophenol with enhanced performance. Transit Met Chem 45, 31–39 (2020). https://doi.org/10.1007/s11243-019-00353-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-019-00353-z

Navigation