Skip to main content
Log in

Insight into anion effects on catechol oxidation catalysis: cyclodimeric Cu(II) complexes containing 1,3,5-tris(nicotinoyloxy-methyl)benzene

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Self-assembly of CuX2 with C3-symmetric tridentate ligand, 1,3,5-tris(nicotinoyloxy-methyl)benzene (L), affords thermodynamically stable C2-symmetric metallacyclodimers, [Cu2X2L2(H2O)2]X2(H2O)2 (X = NO3, BF4, and ClO4) in high yields. These cyclodimeric species show the significant anion effects on the catechol oxidation catalysis in chloroform in the order [Cu2(NO3)2L2(H2O)2](NO3)2(H2O)2 > [Cu2(BF4)2L2(H2O)2](BF4)2(H2O)2 > [Cu2(ClO4)2L2(H2O)2](ClO4)2(H2O)2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gale PA (2001) Coord Chem Rev 213:79

    Article  CAS  Google Scholar 

  2. Jung OS, Kim YJ, Lee YA, Park JK, Chae HK (2000) J Am Chem Soc 122:9921

    Article  CAS  Google Scholar 

  3. Jung OS, Kim YJ, Lee YA, Park KM, Lee SS (2003) Inorg Chem 42:844

    Article  CAS  Google Scholar 

  4. Wu HP, Janiak C, Rheinwald G, Lang HJ (1999) J Chem Soc, Dalton Trans 2:183

    Article  Google Scholar 

  5. Kim JG, Cho Y, Noh TH, Jung OS (2014) J Mol Struct 1076:352

    Article  CAS  Google Scholar 

  6. Reed CA (1998) Acc Chem Res 31:133

    Article  CAS  Google Scholar 

  7. Turner B, Shterenberg A, Kapon M, Suwinska K, Eichen Y (2001) Chem Commun 1:13

    Article  Google Scholar 

  8. Moon SY, Park MW, Noh TH, Jung OS (2013) J Mol Struct 1054:326

    Article  Google Scholar 

  9. Choi D, Lee H, Lee JJ, Jung OS (2017) Cryst Growth Des 17:6677

    Article  CAS  Google Scholar 

  10. Cho Y, Noh TH, Kim JG, Lee H, Jung OS (2016) Cryst Growth Des 16:3054

    Article  CAS  Google Scholar 

  11. Hyun S, Yang L, Kim D, Jung OS (2019) Dalton Trans 48:10927

    Article  CAS  Google Scholar 

  12. Ahn J, Kim SM, Noh TH, Jung OS (2011) Dalton Trans 40:8520

    Article  CAS  Google Scholar 

  13. Uehara K, Kasai K, Mizuno N (2010) Inorg Chem 49:2008

    Article  CAS  Google Scholar 

  14. Chun IS, Kwon JA, Yoon HJ, Bae MN, Hong J, Jung OS (2007) Angew Chem Int Ed 46:4960

    Article  CAS  Google Scholar 

  15. Thanasekaran P, Lee CH, Lu KL (2014) Coord Chem Rev 280:96

    Article  CAS  Google Scholar 

  16. Shinkai S (1993) Tetrahedron 49:8933

    Article  CAS  Google Scholar 

  17. Wenz G, Han BH, Müller A (2006) Chem Rev 106:782

    Article  CAS  Google Scholar 

  18. Baldini L, Casnati A, Sansone F, Ungaro R (2007) Chem Soc Rev 36:254

    Article  CAS  Google Scholar 

  19. Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L (2005) Angew Chem Int Ed 44:4844

    Article  CAS  Google Scholar 

  20. Biswas A, Das LK, Drew MGB, Diaz C, Ghosh A (2012) Inorg Chem 51:10111

    Article  CAS  Google Scholar 

  21. Berreau LM, Mahapatra S, Halfen JA, Hauser RP, Young VG Jr, Tolman WB (1999) Angew Chem Int Ed 38:207

    Article  CAS  Google Scholar 

  22. Das O, Paine TK (2012) Dalton Trans 41:11476

    Article  CAS  Google Scholar 

  23. Trémolières M, Bieth JB (1984) Phytochemistry 23:501

    Article  Google Scholar 

  24. Reim J, Krebs B (1997) J Chem Soc, Dalton Trans 20:3793

    Article  Google Scholar 

  25. Meiwes D, Ross B, Kiesshauer M, Cammann K, Witzel H, Knoll M, Borchardt M, Sandermaier C (1992) Lab Med 15:24

    Google Scholar 

  26. Haack P, Limberg C (2014) Angew Chem Int Ed 53:4282

    Article  CAS  Google Scholar 

  27. Kim D, Park S, Jung OS (2019) Cryst Growth Des 19:2019

    Article  CAS  Google Scholar 

  28. Nonius B (2013) APES, SAINT and XPREP. Bruker AXS INC, Billerica

    Google Scholar 

  29. Shin JW, Eom K, Moon DJ (2016) Synchrotron Radiat 23:369

    Article  Google Scholar 

  30. Sheldrick GM (2015) Acta Crystallogr Sect C: Struct Chem 71:3

    Article  Google Scholar 

  31. Bhardwaj VK, Aliaga-Alcalde N, Corbella M, Hundal G (2010) Inorg Chim Acta 363:97

    Article  CAS  Google Scholar 

  32. Klabunde T, Eicken C, Sacchettini JC, Krebs B (1998) Nat Struct Biol 5:1084

    Article  CAS  Google Scholar 

  33. Pierpont CG (2001) Coord Chem Rev 216:99

    Article  Google Scholar 

  34. Ryu M, Lee YA, Jung OS (2018) J Mol Struct 1152:321

    Article  CAS  Google Scholar 

  35. Jung OS, Cho Y, Jung JH, Shon YS (1994) Bull Korean Chem Soc 15:608

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Research Foundation of Korea (NRF) Grants funded by the Korean Government [MEST] (2019K1A3A1A25000268) (OSJ) and (2017R1D1A3B03035719) (YAL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ok-Sang Jung.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11243_2019_358_MOESM1_ESM.doc

IR spectra, 1H NMR spectra and TGA curves of [Cu2(NO3)2L2(H2O)2](NO3)2(H2O)2, [Cu2(BF4)2L2(H2O)2](BF4)2(H2O)2, [Cu2(ClO4)2L2(H2O)2](ClO4)2(H2O)2. Crystallographic data for the structure reported here have been deposited with the Cambridge Crystallographic Data Centre (Deposition No. CCDC 1952951, 1952929 and 1952935 for [Cu2(NO3)2L2(H2O)2](NO3)2(H2O)2, [Cu2(BF4)2L2(H2O)2](BF4)2(H2O)2, [Cu2(ClO4)2L2(H2O)2](ClO4)2(H2O)2 respectively. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif (DOC 2126 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Lee, S., Lee, Y.A. et al. Insight into anion effects on catechol oxidation catalysis: cyclodimeric Cu(II) complexes containing 1,3,5-tris(nicotinoyloxy-methyl)benzene. Transit Met Chem 45, 65–70 (2020). https://doi.org/10.1007/s11243-019-00358-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-019-00358-8

Navigation