Skip to main content
Log in

Dregs and grits from kraft pulp mills incorporated to Portland cement clinker

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

The expansion of the kraft pulp industry in Brazil increases the generation of solid waste, which needs to be adequately disposed of. The objective of the present study was to investigate the technical viability for cement production by mixing with clinker 0, 2.5, 5, 7.5, 10, and 15 wt% of alkaline dregs and grits, normally disposed of in landfills. The materials (residues and clinker) were characterized for mass, specific area fineness, X-ray diffraction, scanning electron microscopy with dispersive energy spectroscopy, pozzolanicity, and thermogravimetric analyses. Laboratory assays were carried out. The material physical–chemical properties were satisfactory for clinker addition and the laboratory assays with less than 15 wt% of dregs and grits in the mixture were efficient. Dregs and grits may be added to up to 10 wt% to clinker for cement production under the same preparation conditions and degree of grinding. The results pointed out to important environmental achievements to both pulp and cement industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. IBÁ (2019) Statistics of Brazilian tree industry/January 2019. São Paulo/Brasília: p 7. https://iba.org/datafiles/e-mail-marketing/cenarios/56-cenarios_2.pdf. Accessed 23 April 2019

  2. Kinnarinen T, Golmaei M, Jernström E, Häkkinen A (2016) Separation, treatment and utilization of inorganic residues of chemical pulp mills. J Clean Prod 133:953–964. https://doi.org/10.1016/j.jclepro.2016.06.024

    Article  Google Scholar 

  3. Monte MC, Fuente E, Blanco A, Negro C (2009) Waste management from pulp and paper production in the European Union. Waste Manag. 29:293–308. https://doi.org/10.1016/j.wasman.2008.02.002

    Article  Google Scholar 

  4. ABNT (2004) ABNT NBR 10004 - Resíduos sólidos – Classificação. ABNT - Associação Brasileira de Normas Técnicas, Rio de Janeiro, p 71

    Google Scholar 

  5. Suhr M, Klein G, Kourti I, et al (2015) Best available techniques (BAT)–eeference document for the production of pulp, paper and board. Seville, Spain: European Commission; https://eippcb.jrc.ec.europa.eu/reference/BREF/PP_revised_BREF_2015.pdf. Accessed 2 Aug 2017

  6. Bajpai P (2015) Generation of waste in pulp and paper mills. In: Management of pulp and paper mill waste. Springer, Cham. pp 9–17. https://doi.org/10.1007/978-3-319-11788-1_2

  7. Gavrilescu D (2004) Solid waste generation in kraft pulp mills. Environ Eng Manag J 3:399–404

    Article  Google Scholar 

  8. Green RP, Hough G (1992) (eds) Chemical recovery in the alkaline pulping processes. 3rd edn. TappiPr, Atlanta

    Google Scholar 

  9. Krigstin S, Sain M (2006) Characterization and potential utilization of recycled paper mill sludge. Pulp Pap Can 107:29–32

    Google Scholar 

  10. Sanchez D, Tran H (2005). Treatment of Lime slaker grit and green liquor dregs—current practice. In: Proceedings of the Tappi Engineering, Pulping and Environmental Conference. Philadelphia

  11. Buruberri LH, Seabra MP, Labrincha JÁ (2015) Preparation of clinker from paper pulp industry wastes. J Hazard Mater 286:252–260. https://doi.org/10.1016/j.jhazmat.2014.12.053

    Article  Google Scholar 

  12. Castro F, Vilarinho C et al (2009) Utilisation of pulp and paper industry wastes as raw materials in cement clinker production. Int J Mater Eng Innov 1:74–90. https://doi.org/10.1504/IJMatEI.2009.024028

    Article  Google Scholar 

  13. Bribián IZ, Capilla AV, Usón AA (2011) Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Build Environ 46:1133–1140. https://doi.org/10.1016/j.buildenv.2010.12.002

    Article  Google Scholar 

  14. Chen C, Habert G, Bouzidi Y, Jullien A (2010) Environmental impact of cement production: detail of the different processes and cement plant variability evaluation. J Clean Prod 18:478–485. https://doi.org/10.1016/j.jclepro.2009.12.014

    Article  Google Scholar 

  15. Martínez-Lage I, Velay-Lizancos M et al (2016) Concretes and mortars with waste paper industry: biomass ash and dregs. J Environ Manag 181:863–873. https://doi.org/10.1016/j.jenvman.2016.06.052

    Article  Google Scholar 

  16. Siqueira FB, Holanda JNF (2013) Reuse of grits waste for the production of soil–cement bricks. J Environ Manag 131:1–6. https://doi.org/10.1016/j.jenvman.2013.09.040

    Article  Google Scholar 

  17. Provis JL (2017) Alkali-activated materials. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2017.02.009(in press)

    Article  Google Scholar 

  18. Seyyedalipour SF, Kebria DY, Malidarreh NR, Norouznejad G (2014) Study of utilization of pulp and paper industry wastes in production of concrete. Int J Eng Res Appl 4:115–122

    Google Scholar 

  19. Zambrano M, Pichún C et al (2010) Green liquor dregs effect on Kraft mill secondary sludge composting. Bioresour Technol 101:1028–1035. https://doi.org/10.1016/j.biortech.2009.09.049

    Article  Google Scholar 

  20. Wolff E, Schwabe WK, Conceição SV (2015) Utilization of water treatment plant sludge in structural ceramics. J Clean Prod 96:282–289. https://doi.org/10.1016/j.jclepro.2014.06.018

    Article  Google Scholar 

  21. SNIC (2019) Resultados preliminares—Janeiro 2019. Rio de Janeiro: SNIC—Sindicato Nacional da Indústria do Cimento. p. 2. https://snic.org.br/assets/pdf/resultados-preliminares/1549891980.pdf. Accessed 23 April 2019

  22. USGS (2019) Mineral Commodity Summaries 2019. Virginia: US. Geological Survey; p 204. https://minerals.usgs.gov/minerals/pubs/mcs/2019/mcs2019.pdf. Accessed 23 April 2019

  23. Hendriks C, Worrell E, Jager D, Blok K, Riemer P (1998) Emission Reduction of Greenhouse Gases from the Cement Industry. In: Proceedings of the Fourth International conference on greenhouse gas control technologies. Interlaken, Austria. 10.1016/B978–008043018–8/50150–8

  24. Humphreys K, Mahasenan M (2002) Toward a sustainable cement industry. Sub-study 8: climate change, An independent study commissioned to battelle by world business council for sustainable development. https://www.osti.gov/etdeweb/biblio/20269589. Accessed 6 June 2019

  25. Worrell E, Martin N, Price L (2000) Potentials for energy efficiency improvement in the US cement industry. Energy. 25:1189–1214. https://doi.org/10.1016/S0360-5442(00)00042-6

    Article  Google Scholar 

  26. Isaia GC (2010) Materiais de construção civil e princípios de ciências e engenharia de materiais. IBRACON, São Paulo

    Google Scholar 

  27. Mehta PK, Monteiro PJ (2006) Concrete: microstructure, properties, and materials, 3rd edn. McGraw-Hill Professional Publishing, New York

    Google Scholar 

  28. Bignozzi MC (2011) Sustainable cements for green buildings construction. Proc Eng 21:915–921. https://doi.org/10.1016/j.proeng.2011.11.2094

    Article  Google Scholar 

  29. Andreola F, Barbieri L, Lancellotti I, Bignozzi MC, Sandrolini F (2010) New blended cement from polishing and glazing ceramic sludge. Int J Appl Ceram Technol 7:546–555. https://doi.org/10.1111/j.1744-7402.2009.02368.x

    Article  Google Scholar 

  30. Bignozzi MC, Saccani A, Sandrolini F (2009) Matt waste from glass separated collection: an eco-sustainable addition for new building materials. Waste Manag 29:329–334. https://doi.org/10.1016/j.wasman.2008.02.028

    Article  Google Scholar 

  31. Bignozzi MC, Saccani A, Sandrolini F (2010) Chemical–physical behaviour of matt waste in cement mixtures. Constr Build Mater 24:2194–2199. https://doi.org/10.1016/j.conbuildmat.2010.04.038

    Article  Google Scholar 

  32. Bignozzi M, Sandrolini F, Andreola F, Barbieri L, Lancellotti I (2010) Recycling electric arc furnace slag as unconventional component for building materials. In: Proceedings of 2nd International Conference on sustainable construction materials and technologies. Ancona, Italy. pp 557–567

  33. Pacheco-Torgal F, Jalali S (2010) Reusingceramicwastes in concrete. Constr Build Mater 24:832–838. https://doi.org/10.1016/j.conbuildmat.2009.10.023

    Article  Google Scholar 

  34. Shi C, Wu Y, Riefler C, Wang H (2005) Characteristics and pozzolanic reactivity of glass powders. Cem Concr Res 35:987–993. https://doi.org/10.1016/j.cemconres.2004.05.015

    Article  Google Scholar 

  35. Torres CMME (2016) Incorporação de dregs e grits de fábricas de polpa celulósica kraft ao clínquer para a produção de cimento Portland. Dissertação de Mestrado, Universidade Federal de Viçosa. https://www.locus.ufv.br/handle/123456789/9293. Accessed 16 July 2019

  36. Kral U, Morf LS, Vyzinkarova D, Brunner PH (2019) Cycles and sinks: two key elements of a circular economy. J Mater Cycles Waste Manag 21(1):1–9. https://doi.org/10.1007/s10163-018-0786-6

    Article  Google Scholar 

  37. Hassan MK, Villa A, Kuittinen S, Jänis J, Pappinen A (2019) An assessment of side-stream generation from Finnish forest industry. J Mater Cycles Waste Manag 21(2):265–280. https://doi.org/10.1007/s10163-018-0787-5

    Article  Google Scholar 

  38. Saccani A, Sandrolini F, Andreola F, Barbieri L, Corradi A, Lancellotti I (2005) Influence of the pozzolanic fraction obtained from vitrified bottom-ashes from MSWI on the properties of cementitious composites. Mater Struct 38:367–371. https://doi.org/10.1007/BF02479303

    Article  Google Scholar 

  39. Luxán MP, Madruga F, Saavedra J (1989) Rapid evaluation of pozzolanic activity of natural products by conductivity measurement. Cem Concr Res 19:63–68. https://doi.org/10.1016/0008-8846(89)90066-5

    Article  Google Scholar 

  40. ABNT (2001) ABNT NBR NM 23 - Cimento Portland e outros materiais em pó - Determinação da massa específica. ABNT - Associação Brasileira de Normas Técnicas, Rio de Janeiro, p 5

    Google Scholar 

  41. ABNT (2015) ABNT NBR 16372 - Cimento Portland e outros materiais em pó - Determinação da finura pelo método de permeabilidade ao ar (método de Blaine). ABNT - Associação Brasileira de Normas Técnicas, Rio de Janeiro, p 11

    Google Scholar 

  42. ASTM (2011) ASTM C204-test methods for fineness of hydraulic cement by air-permeability apparatus. ASTM International-American Society for Testing and Materials, West Conshohocken

    Google Scholar 

  43. ABNT (2013) ABNT NBR 11579 - Cimento Portland — Determinação do índice de finura por meio da peneira 75 μm (no 200). ABNT - Associação Brasileira de Normas Técnicas, Rio de Janeiro, p 4

    Google Scholar 

  44. ASTM (2015) ASTM C430-Standard test method for fineness of hydraulic cement by the 45-mm (No. 325). ASTM International-American Society for Testing and Materials, West Conshohocken

    Google Scholar 

  45. ABNT (2016) ABNT NBR 11582 - Cimento Portland - Determinação da expansibilidade Le Chatelier. ABNT - Associação Brasileira de Normas Técnicas, Rio de Janeiro

    Google Scholar 

  46. ASTM (2009) ASTM C188-standard test method for density of hydraulic cement. ASTM International-American Society for Testing and Materials, West Conshohocken

    Google Scholar 

  47. ABNT (2003) ABNT NBR NM 65 - Cimento Portland - Determinação do tempo de pega. ABNT - Associação Brasileira de Normas Técnicas, Rio de Janeiro

    Google Scholar 

  48. ASTM (2013) ASTM C191-Standard test methods for time of setting of hydraulic cement by vicat needle. ASTM International-American Society for Testing and Materials, West Conshohocken

    Google Scholar 

  49. ABNT (2003) ABNT NBR NM 43 - Cimento portland - Determinação da pasta de consistência normal. ABNT - Associação Brasileira de Normas Técnicas, Rio de Janeiro

    Google Scholar 

  50. ASTM (2015) ASTM C187-Standard test method for amount of water required for normal consistency of hydraulic cement paste. ASTM International-American Society for Testing and Materials, West Conshohocken

    Google Scholar 

  51. ABNT (1997) ABNT NBR 7215 - Cimento Portland - Determinação da resistência à compressão. ABNT - Associação Brasileira de Normas Técnicas, Rio de Janeiro

    Google Scholar 

  52. ASTM (2013) ASTM C109-Test method for compressive strength of hydraulic cement mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International-American Society for Testing and Materials, West Conshohocken

    Google Scholar 

  53. ABNT (2008) ABNT NBR 8522 - Concreto - Determinação do módulo estático de elasticidade à compressão. ABNT - Associação Brasileira de Normas Técnicas, Rio de Janeiro

    Google Scholar 

  54. ASTM (2014) ASTM C469-Standard test method for static modulus of elasticity and poisson’s ratio of concrete in compression. ASTM International-American Society for Testing and Materials, West Conshohocken

    Google Scholar 

  55. ABNT (2016) ABNT NBR 5738 - Concreto - Procedimento para moldagem e cura de corpos de prova. ABNT - Associação Brasileira de Normas Técnicas, Rio de Janeiro

    Google Scholar 

  56. ACI (1998) ACI 363.2R-98 – Guide to quality control and testing of high-strength concrete. ACI American Concrete Institute, Farmington Hills, Michigan, pp 18

  57. ABNT (2007) ABNT NBR 5739 - Concreto - Ensaios de compressão de corpos-de-prova cilíndricos. ABNT - Associação Brasileira de Normas Técnicas, Rio de Janeiro

    Google Scholar 

  58. ASTM (2003) ASTM C39-Standard test method for compressive strength of cylindrical concrete specimens. ASTM International-American Society for Testing and Materials, West Conshohocken

    Google Scholar 

  59. ASTM (2009) ASTM C595-standard specification for blended hydraulic cements. ASTM International-American Society for Testing and Materials, West Conshohocken

    Google Scholar 

  60. ABNT (1991) ABNT NBR 5732 - Cimento Portland comum. ABNT - Associação Brasileira de Normas Técnicas, Rio de Janeiro

    Google Scholar 

  61. ABNT (1997) ABNT NBR 11578 - Cimento Portland composto - Especificação. ABNT - Associação Brasileira de Normas Técnicas, Rio de Janeiro

    Google Scholar 

  62. Nettleship I, Slavick KG, Kim YJ, Kriven WM (1992) Phase transformations in dicalcium silicate: i, fabrication and phase stability of Fine-Grained β Phase. J Am Ceram Soc 75:2400–2406. https://doi.org/10.1111/j.1151-2916.1992.tb05592.x

    Article  Google Scholar 

  63. Biermann CJ (1993) Essentials of pulping and papermaking. Academic Press, San Diego

    Google Scholar 

  64. Machado AT, Gomes A de O, Cardoso RJC, Cruz EB (2002) O uso de escórias de aciaria como agregado na construção civil. In: Anais do IX Encontro Nacional de Tecnologia do Ambiente Construído (ENTAC). Foz do Iguaçu, pp 1595–1602.

  65. Petrucci EGR, Paulon VA (1998) Concreto de cimento Portland, 13th edn. Globo, São Paulo, p 1998

    Google Scholar 

  66. Poggiali FSJ (2010) Desempenho de microconcretos fabricados com cimento Portland com adições de cinza de bagaço de cana-de-açúcar. Dissertação de Mestrado, Universidade Federal de Minas Gerais

  67. Benarchid Y, Rogez J (2005) The effect of Cr2O3 and P2O5 additions on the phase transformations during the formation of calcium sulfoaluminate C4A3S¯. Cem Concr Res 35:2074–2080. https://doi.org/10.1016/j.cemconres.2005.06.005

    Article  Google Scholar 

  68. Li X, Xu W, Wang S, Tang M, Shen X (2014) Effect of SO3 and MgO on Portland cement clinker: formation of clinker phases and alite polymorphism. Constr Build Mater 58:182–192. https://doi.org/10.1016/j.conbuildmat.2014.02.029

    Article  Google Scholar 

  69. Souza TI, Cardoso AV (2008) Utilização de Resíduos Sólidos da Indústria de Celulose Kraft na Fabricação de Cimento: caracterização físico-química. In: Anais do Congresso brasileiro de engenharia e ciência dos materiais. Porto de Galinhas. p 18

  70. Staněk T, Sulovský P (2009) The influence of phosphorous pentoxide on the phase composition and formation of Portland clinker. Mater Charact 60:749–755. https://doi.org/10.1016/j.matchar.2008.11.013

    Article  Google Scholar 

  71. Martins FM, Martins JM, Ferracin LC, da Cunha CJ (2007) Mineral phases of green liquor dregs, slaker grits, lime mud and wood ash of a Kraft pulp and paper mill. J Hazard Mater 147:610–617. https://doi.org/10.1016/j.jhazmat.2007.01.057

    Article  Google Scholar 

  72. Liu X, Feng Y, Li H (2011) Preparation of basic magnesium carbonate and its thermal decomposition kinetics in air. J Cent South Univ Technol 18:1865–1870. https://doi.org/10.1007/s11771-011-0915-z

    Article  Google Scholar 

  73. Al-Jabri KS, Hago AW, Al-Nuaimi AS, Al-Saidy AH (2005) Concrete blocks for thermal insulation in hot climate. Cem Concr Res 35:1472–1479. https://doi.org/10.1016/j.cemconres.2004.08.018

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the CNPq, CAPES, FAPEMIG, and Bioforest for the support provided for this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caio Moreira Miquelino Eleto Torres.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, C.M.M.E., Silva, C.M., Pedroti, L.G. et al. Dregs and grits from kraft pulp mills incorporated to Portland cement clinker. J Mater Cycles Waste Manag 22, 851–861 (2020). https://doi.org/10.1007/s10163-020-00983-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-020-00983-x

Keywords

Navigation