Skip to main content
Log in

A novel asymmetric activated carbon electrode doped with metal-organic frameworks for high desalination performance

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, we synthesized metal-organic framework Cu3(BTC)2 which was applied as the doping materials of anode electrodes in capacitive deionization (CDI) for the first time. Cu3(BTC)2 possessed a hierarchical channel structure and a specific surface area as high as 2160 m2 g−1. Fifty weight percent of Cu3(BTC)2-doped activated carbon electrode (AC-M5) demonstrated better hydrophilicity, greater capacitance performance, and smaller material internal resistance than AC electrode. Capacitive deionization experimental result showed AC-M5 had the biggest electrosorption capacity of 35 mg g−1, which was 2.2 times higher than that of control. In addition to the excellent surface structure and electrochemical performance, the electrostatic force derived from Cu2+ greatly enhanced the adsorption performance of electrodes. The effect of desalination at the anode was much greater than that at the cathode, which also verified the effect of electrostatic forces on adsorption. Simple doping greatly improved the electrosorption capacity, indicating that Cu3(BTC)2 should be a promising doping material in anode for highly capacitive deionization applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shen J, Li Y, Wang C, Luo R, Li J, Sun X, Shen J, Han W, Wang L (2018) Hollow ZIFs-derived nanoporous carbon for efficient capacitive deionization. Electrochim Acta 273:34–42

    CAS  Google Scholar 

  2. Chen Z, Zhang H, Wu C, Luo L, Wang C, Huang S, Xu H (2018) A study of the effect of carbon characteristics on capacitive deionization (CDI) performance. Desalination 433:68–74

    CAS  Google Scholar 

  3. Andres GL, Mizugami T, Yoshihara Y (2017) Simulation of an electric behavior of the CDI system. Desalination 419:211–218

    CAS  Google Scholar 

  4. Cai W, Yan J, Hussin T, Liu J (2017) Nafion-AC-based asymmetric capacitive deionization. Electrochim Acta 225:407–415

    CAS  Google Scholar 

  5. Li Y, Liu Y, Shen J, Qi J, Li J, Sun X, Shen J, Han W, Wang L (2018) Design of nitrogen-doped cluster-like porous carbons with hierarchical hollow nanoarchitecture and their enhanced performance in capacitive deionization. Desalination 430:45–55

    CAS  Google Scholar 

  6. Chang L, Hu YH (2018) Highly conductive porous Na-embedded carbon nanowalls for high-performance capacitive deionization. J Phys Chem Solids 116:347–352

    CAS  Google Scholar 

  7. Sun Z, Chai L, Liu M, Shu Y, Li Q, Wang Y, Wang Q, Qiu D (2018) Capacitive deionization of chloride ions by activated carbon using a three-dimensional electrode reactor. Sep Purif Technol 191:424–432

    CAS  Google Scholar 

  8. Ratajczak P, Suss ME, Kaasik F, Béguin F (2019) Carbon electrodes for capacitive technologies. Energy Storage Mater 16:126–145

    Google Scholar 

  9. Li J, Ji B, Jiang R, Zhang P, Chen N, Zhang G, Qu L (2018) Hierarchical hole-enhanced 3D graphene assembly for highly efficient capacitive deionization. Carbon 129:95–103

    CAS  Google Scholar 

  10. Ma D, Wang Y, Han X, Xu S, Wang J (2017) Electrode configuration optimization of capacitive deionization cells based on zero charge potential of the electrodes. Sep Purif Technol 189:467–474

    CAS  Google Scholar 

  11. Leong ZY, Lu G, Yang HY (2019) Three-dimensional graphene oxide and polyvinyl alcohol composites as structured activated carbons for capacitive desalination. Desalination 451:172–181

    CAS  Google Scholar 

  12. Gao T, Li H, Zhou F, Gao M, Liang S, Luo M (2019) Mesoporous carbon derived from ZIF-8 for high efficient electrosorption. Desalination 451:133–138

    CAS  Google Scholar 

  13. Jo H, Kim KH, Jung M-J, Park JH, Lee Y-S (2017) Fluorination effect of activated carbons on performance of asymmetric capacitive deionization. Appl Surf Sci 409:117–123

    CAS  Google Scholar 

  14. Zhang L, Liu Y, Lu T, Pan L (2017) Cocoon derived nitrogen enriched activated carbon fiber networks for capacitive deionization. J Electroanal Chem 804:179–184

    CAS  Google Scholar 

  15. Li Y, Shen J, Li J, Sun X, Shen J, Han W, Wang L (2017) A protic salt-derived porous carbon for efficient capacitive deionization: balance between porous structure and chemical composition. Carbon 116:21–32

    CAS  Google Scholar 

  16. Li N, An J, Wang X, Wang H, Lu L, Ren ZJ (2017) Resin-enhanced rolling activated carbon electrode for efficient capacitive deionization. Desalination 419:20–28

    CAS  Google Scholar 

  17. Guyes EN, Shocron AN, Simanovski A, Biesheuvel PM, Suss ME (2017) A one-dimensional model for water desalination by flow-through electrode capacitive deionization. Desalination 415:8–13

    CAS  Google Scholar 

  18. Xie Z, Shang X, Yan J, Hussain T, Nie P, Liu J (2018) Biomass-derived porous carbon anode for high-performance capacitive deionization. Electrochim Acta 290:666–675

    CAS  Google Scholar 

  19. Yasin AS, Mohamed IMA, Amen MT, Barakat NAM, Park CH, Kim CS (2019) Incorporating zirconia nanoparticles into activated carbon as electrode material for capacitive deionization. J Alloys Compd 772:1079–1087

    CAS  Google Scholar 

  20. Wang M, Xu X, Liu Y, Li Y, Lu T, Pan L (2016) From metal-organic frameworks to porous carbons: a promising strategy to prepare high-performance electrode materials for capacitive deionization. Carbon 108:433–439

    CAS  Google Scholar 

  21. Liu Y, Xu X, Wang M, Lu T, Sun Z, Pan L (2015) Metal-organic framework-derived porous carbon polyhedra for highly efficient capacitive deionization. Chem Commun (Camb) 51(60):12020–12023

    CAS  Google Scholar 

  22. Xu X, Wang M, Liu Y, Lu T, Pan L (2016) Metal–organic framework-engaged formation of a hierarchical hybrid with carbon nanotube inserted porous carbon polyhedra for highly efficient capacitive deionization. J Mater Chem A 4:5467–5473

    CAS  Google Scholar 

  23. Yang R, Li K, Lv C, Cen B, Liang B (2019) The exceptional performance of polyhedral porous carbon embedded nitrogen-doped carbon networks as cathode catalyst in microbial fuel cells. J Power Sources 442:227229

    CAS  Google Scholar 

  24. Saraf M, Rajak R, Mobin SM (2016) A fascinating multitasking Cu-MOF/rGO hybrid for high performance supercapacitors and highly sensitive and selective electrochemical nitrite sensors. J Mater Chem A 4:16432–16445

    CAS  Google Scholar 

  25. Gascon J, Aguado S, Kapteijn F (2008) Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on α-alumina. Microporous Mesoporous Mater 113:132–138

    CAS  Google Scholar 

  26. Tian P, Liu D, Li K, Yang T, Wang J, Liu Y, Zhang S (2017) Porous metal-organic framework Cu3(BTC)2 as catalyst used in air-cathode for high performance of microbial fuel cell. Bioresour Technol 244(Pt 1):206–212

    CAS  PubMed  Google Scholar 

  27. Chaikittisilp W, Hu M, Wang H, Huang HS, Fujita T, Wu KC, Chen LC, Yamauchi Y, Ariga K (2012) Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chem Commun 48(58):7259–7261

    CAS  Google Scholar 

  28. Zhao S, Yan T, Wang H, Chen G, Huang L, Zhang J, Shi L, Zhang D (2016) High capacity and high rate capability of nitrogen-doped porous hollow carbon spheres for capacitive deionization. Appl Surf Sci 369:460–469

    CAS  Google Scholar 

  29. Oren Y (2008) Capacitive deionization (CDI) for desalination and water treatment—past, present and future (a review). Desalination 228:10–29

    CAS  Google Scholar 

  30. Liu CL, Dong W, Cao G, Song J, Liu L, Yang Y (2008) Capacitance limits of activated carbon fiber electrodes in aqueous electrolyte. J Electrochem Soc 155:F1–F7

    CAS  Google Scholar 

  31. Seo SJ, Jeon H, Lee JK, Kim GY, Park D, Nojima H, Lee J, Moon SH (2010) Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications. Water Res 44(7):2267–2275

    CAS  PubMed  Google Scholar 

  32. Shao Q, Tang J, Lin Y, Li J, Qin F, Yuan J, Qin L-C (2015) Carbon nanotube spaced graphene aerogels with enhanced capacitance in aqueous and ionic liquid electrolytes. J Power Sources 278:751–759

    CAS  Google Scholar 

  33. Fu C, Kuang Y, Huang Z, Wang X, Yin Y, Chen J, Zhou H (2010) Supercapacitor based on graphene and ionic liquid electrolyte. J Solid State Electrochem 15:2581–2585

    Google Scholar 

  34. Li W, Yang YJ (2014) The reduction of graphene oxide by elemental copper and its application in the fabrication of graphene supercapacitor. J Solid State Electrochem 18:1621–1626

    CAS  Google Scholar 

  35. Luo M, Dou Y, Kang H, Ma Y, Ding X, Liang B, Ma B, Li L (2015) A novel interlocked Prussian blue/reduced graphene oxide nanocomposites as high-performance supercapacitor electrodes. J Solid State Electrochem 19:1621–1631

    CAS  Google Scholar 

  36. Liu HD, Zhang JL, Xu DD, Huang LH, Tan SZ, Mai WJ (2015) Easy one-step hydrothermal synthesis of nitrogen-doped reduced graphene oxide/iron oxide hybrid as efficient supercapacitor material. J Solid State Electrochem 19:135–144

    CAS  Google Scholar 

  37. De Wael K, Peeters K, Bogaert D, Buschop H, Vincze L, Adriaens A (2007) Electrochemical and spectroscopic characterization of a gold electrode modified with 3,4′,4″,4‴ copper(II) tetrasulphonated phthalocyanine. J Electroanal Chem 603:212–218

    Google Scholar 

  38. Doménech A, García H, Doménech-Carbó MAT, Llabrés-i-Xamena F (2006) Electrochemistry nanometric patterning of MOF particles: anisotropic metal electrodeposition in Cu/MOF. Electrochem Commun 8:1830–1834

    Google Scholar 

  39. Zornitta RL, Ruotolo LAM (2018) Simultaneous analysis of electrosorption capacity and kinetics for CDI desalination using different electrode configurations. Chem Eng J 332:33–41

    CAS  Google Scholar 

  40. Kumar R, Sen Gupta S, Katiyar S, Raman VK, Varigala SK, Pradeep T, Sharma A (2016) Carbon aerogels through organo-inorganic co-assembly and their application in water desalination by capacitive deionization. Carbon 99:375–383

    CAS  Google Scholar 

  41. Zhao J, Jiang Y, Fan H, Liu M, Zhuo O, Wang X, Wu Q, Yang L, Ma Y, Hu Z (2017) Porous 3D few-layer graphene-like carbon for ultrahigh-power supercapacitors with well-defined structure-performance relationship. Adv Mater 29(11):1604569

    Google Scholar 

  42. Lu H, Dai W, Zheng M, Li N, Ji G, Cao J (2012) Electrochemical capacitive behaviors of ordered mesoporous carbons with controllable pore sizes. J Power Sources 209:243–250

    CAS  Google Scholar 

  43. Toupin M, Bélanger D, Hill IR, Quinn D (2005) Performance of experimental carbon blacks in aqueous supercapacitors. J Power Sources 140:203–210

    CAS  Google Scholar 

  44. Maleki A, Hayati B, Naghizadeh M, Joo SW (2015) Adsorption of hexavalent chromium by metal organic frameworks from aqueous solution. J Ind Eng Chem 28:211–216

    CAS  Google Scholar 

  45. Zheng B, Chen T-W, Xiao F-N, Bao W-J, Xia X-H (2013) KOH-activated nitrogen-doped graphene by means of thermal annealing for supercapacitor. J Solid State Electrochem 17:1809–1814

    CAS  Google Scholar 

  46. Yan T, Xu B, Zhang J, Shi L, Zhang D (2018) Ion-selective asymmetric carbon electrodes for enhanced capacitive deionization. RSC Adv 8:2490–2497

    CAS  Google Scholar 

  47. Xu P, Drewes JE, Heil D, Wang G (2008) Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology. Water Res 42(10-11):2605–2617

    CAS  PubMed  Google Scholar 

  48. Gan L, Wu Y, Song H, Zhang S, Lu C, Yang S, Wang Z, Jiang B, Wang C, Li A (2019) Selective removal of nitrate ion using a novel activated carbon composite carbon electrode in capacitive deionization. Sep Purif Technol 212:728–736

    CAS  Google Scholar 

  49. Byles BW, Cullen DA, More KL, Pomerantseva E (2018) Tunnel structured manganese oxide nanowires as redox active electrodes for hybrid capacitive deionization. Nano Energy 44:476–488

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Science Foundation of Tianjin (17JCYBJC23300) and National Key R&D Program of China (No. 2016YFC 0400704 and No. 2016YFC0401407).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kexun Li or Cuicui Lv.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cen, B., Li, K., Lv, C. et al. A novel asymmetric activated carbon electrode doped with metal-organic frameworks for high desalination performance. J Solid State Electrochem 24, 687–697 (2020). https://doi.org/10.1007/s10008-020-04510-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04510-8

Keywords

Navigation