Skip to main content
Log in

Physicochemical Structure Analysis of Chitin Extracted from Pupa Exuviae and Dead Imago of Wild Black Soldier Fly (Hermetia illucens)

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Chitin is the second most widely available natural fiber with diverse applications. Insect chitin is gaining popularity over the last decade. Black soldier fly is a widely known insect with waste management potential. In this study, chitin was isolated from Black soldier fly (Hermetia illucens) pupae exuvia (BSFE) and imago (BSFI). The chitin content was found to be 9% and 23% for pupae exuviae and imago respectively. Both the chitins were α-chitin. The degree of acetylation (DA) confirms that BSFE chitin has higher purity than BSFI chitin. The BSFE chitin is more amorphous than BSFI chitin. The crystallinity index (CrI) for BSFE and BSFI chitin was 25.20% and 49.4%, respectively. Both the chitins had good thermal stability with a maximum degradation (DTGMax) of BSFI and BSFE chitin at 363 °C and 371 °C, respectively. The Brunauer–Emmett–Teller (BET) study showed that chitin from BSFI was mesoporous with well defined cylindrical pore channels while the chitin from BSFE was non-porous. The surface area of BSFE and BSFI chitin was 1.63 and 23.00 m2/g respectively. Both the chitin had a smooth microfibrillar structure with repeating units. Based on the physicochemical characteristics of the BSF-derived chitin it can find promising commercial applications in tissue engineering, textile industry and as an adsorbent in water and wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kaya M, Sofi K, Sargin I, Mujtaba M (2016) Changes in physicochemical properties of chitin at developmental stages (larvae, pupa and adult) of Vespa crabro (wasp). Carbohydr Polym 145:64–70. https://doi.org/10.1016/j.carbpol.2016.03.010

    Article  CAS  PubMed  Google Scholar 

  2. Martínez JP, Falomir MP, Gozalbo D (2014) Chitin: A structural biopolysaccharide with multiple applications. eLS 1–10. https://doi.org/10.1002/9780470015902.a0000694.pub3

  3. Bhatnagar A, Sillanpää M (2009) Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater—a short review. Adv Colloid Interface Sci 152:26–38. https://doi.org/10.1016/j.cis.2009.09.003

    Article  CAS  PubMed  Google Scholar 

  4. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632. https://doi.org/10.1016/j.progpolymsci.2006.06.001

    Article  CAS  Google Scholar 

  5. Deepthi S, Venkatesan J, Kim SK et al (2016) An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering. Int J Biol Macromol 93:1338–1353. https://doi.org/10.1016/j.ijbiomac.2016.03.041

    Article  CAS  PubMed  Google Scholar 

  6. Krajewska B (2004) Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb Technol 35:126–139. https://doi.org/10.1016/j.enzmictec.2003.12.013

    Article  CAS  Google Scholar 

  7. Jayakumar R, Menon D, Manzoor K et al (2010) Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohydr Polym 82:227–232. https://doi.org/10.1016/j.carbpol.2010.04.074

    Article  CAS  Google Scholar 

  8. Boonlertnirun S, Boonraung C, Suvanasara R (2008) Application of chitosan in rice production. J Met Mater Miner 18:47–52

    CAS  Google Scholar 

  9. Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24:2339–2349. https://doi.org/10.1016/S0142-9612(03)00026-7

    Article  CAS  PubMed  Google Scholar 

  10. Hamed I, Özogul F, Regenstein JM (2016) Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): a review. Trends Food Sci Technol 48:40–50. https://doi.org/10.1016/j.tifs.2015.11.007

    Article  CAS  Google Scholar 

  11. Ritter-Jones Marsha (2016) Sarah Najjar KMA. HHS Public Access. 1848:3047–3054. https://doi.org/10.1016/j.bbamem.2015.02.010.Cationic

    Article  Google Scholar 

  12. Usman A, Zia KM, Zuber M et al (2016) Chitin and chitosan based polyurethanes: a review of recent advances and prospective biomedical applications. Int J Biol Macromol 86:630–645. https://doi.org/10.1016/j.ijbiomac.2016.02.004

    Article  CAS  PubMed  Google Scholar 

  13. Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27. https://doi.org/10.1016/S1381-5148(00)00038-9

    Article  Google Scholar 

  14. Roberts GAF (2015) Preparation of Chitin and Chitosan. Chitin Chemistry. Macmillan Education UK, London, pp 54–84

    Google Scholar 

  15. Liu S, Sun J, Yu L et al (2012) Extraction and characterization of chitin from the beetle Holotrichia parallela motschulsky. Molecules 17:4604–4611. https://doi.org/10.3390/molecules17044604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kong B-G, Jang M-K, Nah J-W et al (2004) Physicochemical characterization of?-chitin,?-chitin, and?-chitin separated from natural resources. J Polym Sci A 42:3423–3432. https://doi.org/10.1002/pola.20176

    Article  CAS  Google Scholar 

  17. Merzendorfer H (2003) Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol 206:4393–4412. https://doi.org/10.1242/jeb.00709

    Article  CAS  PubMed  Google Scholar 

  18. Watson DW, Newton L, Sheppard C, Gary B, Dove R (2005) Using the black soldier fly, Hermetia illucens as a value added tool for the management of swine manure. J Korean Entomol Appl Sci 17:17

    Google Scholar 

  19. Vogel H, Müller A, Heckel DG et al (2018) Nutritional immunology: diversification and diet-dependent expression of antimicrobial peptides in the black soldier fly Hermetia illucens. Dev Comp Immunol 78:141–148. https://doi.org/10.1016/j.dci.2017.09.008

    Article  CAS  PubMed  Google Scholar 

  20. Lord WD, Goff ML, Adkins TR, Haskell NH (2015) The black soldier fly Hermetia illucens (Diptera: stratiomyidae) as a potential measure of human postmortem interval: observations and case histories. J Forensic Sci 39:13587J. https://doi.org/10.1520/jfs13587j

    Article  Google Scholar 

  21. Oonincx DGAB, van Huis A, van Loon JJA (2015) Nutrient utilisation by black soldier flies fed with chicken, pig, or cow manure. J Insects Food Feed 1:131–139. https://doi.org/10.3920/jiff2014.0023

    Article  Google Scholar 

  22. Purkayastha D, Sarkar S, Roy P, Kazmi A (2017) Isolation and morphological study of ecologically-important insect “Hermetia illucens” collected from Roorkee compost plant. Pollution 3:453–459. https://doi.org/10.7508/pj.2017.03

    Article  CAS  Google Scholar 

  23. Diener S, Zurbrügg C, Tockner K (2009) Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates. Waste Manag Res 27:603–610. https://doi.org/10.1177/0734242X09103838

    Article  CAS  PubMed  Google Scholar 

  24. Banks IJ, Gibson WT, Cameron MM (2014) Growth rates of black soldier fly larvae fed on fresh human faeces and their implication for improving sanitation. Trop Med Int Heal 19:14–22. https://doi.org/10.1111/tmi.12228

    Article  Google Scholar 

  25. Lindström A, Lalander C, Diener S et al (2013) Faecal sludge management with the larvae of the black soldier fly (Hermetia illucens)—from a hygiene aspect. Sci Total Environ 458–460:312–318. https://doi.org/10.1016/j.scitotenv.2013.04.033

    Article  CAS  PubMed  Google Scholar 

  26. Lalander CH, Fidjeland J, Diener S et al (2014) High waste-to-biomass conversion and efficient Salmonella spp. reduction using black soldier fly for waste recycling. Agron Sustain Dev 35:261–271. https://doi.org/10.1007/s13593-014-0235-4

    Article  CAS  Google Scholar 

  27. Debasree P, Sudipta S, Kazmi AA et al (2017) Effect of environmental parameters on the treatment of human fecal waste by black soldier fly larvae. 4th International Faecal Sludge Management Conference. Chennai, India, pp 73–74

    Google Scholar 

  28. Lalander C, Diener S, Zurbrügg C, Vinnerås B (2019) Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (Hermetia illucens). J Clean Prod 208:211–219. https://doi.org/10.1016/j.jclepro.2018.10.017

    Article  Google Scholar 

  29. Adeniyi OV, Folorunsho C (2015) Performance of Clarias gariepinus (Burchell, 1822) fed dietary levels of black soldier fly, Hermetia illucens (Linnaeus, 1758) prepupae meal as a protein supplement. Int J Res Fish Aquac 5:89–93

    Google Scholar 

  30. Cullere M, Tasoniero G, Giaccone V et al (2016) Black soldier fly as dietary protein source for broiler quails: apparent digestibility, excreta microbial load, feed choice, performance, carcass and meat traits. Animal 10:1923–1930. https://doi.org/10.1017/S1751731116001270

    Article  CAS  PubMed  Google Scholar 

  31. Belforti M, Gasco L, Rotolo L et al (2015) Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Anim Feed Sci Technol 209:211–218. https://doi.org/10.1016/j.anifeedsci.2015.08.006

    Article  CAS  Google Scholar 

  32. Li W, Zheng L, Liu Y et al (2015) Simultaneous utilization of glucose and xylose for lipid accumulation in black soldier fly. Biotechnol Biofuels 8:117. https://doi.org/10.1186/s13068-015-0306-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shakil Rana KM, Salam MA, Hashem S, Ariful Islam M (2015) Development of black soldier fly larvae production technique as an alternate fish feed. Int J Res Fish Aquac 5:41–47

    Google Scholar 

  34. Sealey WM, Gaylord TG, Barrows FT et al (2011) Sensory analysis of rainbow trout, oncorhynchus mykiss, fed enriched black soldier fly prepupae, Hermetia illucens. J World Aquac Soc 42:34–45. https://doi.org/10.1111/j.1749-7345.2010.00441.x

    Article  Google Scholar 

  35. Deboosere S, Ovyn A, De Smet S et al (2016) Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J Sci Food Agric 97:2594–2600. https://doi.org/10.1002/jsfa.8081

    Article  CAS  PubMed  Google Scholar 

  36. Tschirner M, Simon A (2015) Influence of different growing substrates and processing on the nutrient composition of black soldier fly larvae destined for animal feed. J Insects Food Feed 1:249–259. https://doi.org/10.3920/jiff2014.0008

    Article  Google Scholar 

  37. Kozlova AA, Brodskii ES, Pavlov DS et al (2016) Characteristics of lipid fractions of larvae of the black soldier fly Hermetia illucens. Dokl Biochem Biophys 468:209–212. https://doi.org/10.1134/s1607672916030145

    Article  PubMed  Google Scholar 

  38. Waśko A, Bulak P, Polak-Berecka M et al (2016) The first report of the physicochemical structure of chitin isolated from Hermetia illucens. Int J Biol Macromol 92:316–320. https://doi.org/10.1016/j.ijbiomac.2016.07.038

    Article  CAS  PubMed  Google Scholar 

  39. Caligiani A, Marseglia A, Leni G et al (2018) Composition of black soldier fly prepupae and systematic approaches for extraction and fractionation of proteins, lipids and chitin. Food Res Int 105:812–820. https://doi.org/10.1016/j.foodres.2017.12.012

    Article  CAS  PubMed  Google Scholar 

  40. Wu CS, Wang SS (2018) Bio-Based electrospun nanofiber of polyhydroxyalkanoate modified with black soldier fly’s pupa shell with antibacterial and cytocompatibility properties. ACS Appl Mater Interfaces 10:42127–42135. https://doi.org/10.1021/acsami.8b16606

    Article  CAS  PubMed  Google Scholar 

  41. Sheppard DC, Tomberlin JK, Joyce JA et al (2002) Rearing Methods for the Black Soldier Fly (Diptera: stratiomyidae). J Med Entomol 39:695–698. https://doi.org/10.1603/0022-2585-39.4.695

    Article  PubMed  Google Scholar 

  42. Draczynski Z (2008) Honeybee corpses as an available source of chitin. J Appl Polym Sci 109:1974–1981. https://doi.org/10.1002/app.28356

    Article  CAS  Google Scholar 

  43. Xu J, McCarthy SP, Gross RA, Kaplan DL (1996) Chitosan film acylation and effects on biodegradability. Macromolecules 29:3436–3440. https://doi.org/10.1021/ma951638b

    Article  CAS  Google Scholar 

  44. Guinesi LS, Cavalheiro ÉTG (2006) The use of DSC curves to determine the acetylation degree of chitin/chitosan samples. Thermochim Acta 444:128–133. https://doi.org/10.1016/j.tca.2006.03.003

    Article  CAS  Google Scholar 

  45. Kasaai MR (2010) Determination of the degree of N-acetylation for chitin and chitosan by various NMR spectroscopy techniques: a review. Carbohydr Polym 79:801–810. https://doi.org/10.1016/j.carbpol.2009.10.051

    Article  CAS  Google Scholar 

  46. Zhang M, Haga A, Sekiguchi H, Hirano S (2000) Structure of insect chitin isolated from beetle larva cuticle and silkworm (Bombyx mori) pupa exuvia. Int J Biol Macromol 27:99–105. https://doi.org/10.1016/S0141-8130(99)00123-3

    Article  CAS  PubMed  Google Scholar 

  47. Sajomsang W, Gonil P (2010) Preparation and characterization of α-chitin from cicada sloughs. Mater Sci Eng 30:357–363. https://doi.org/10.1016/j.msec.2009.11.014

    Article  CAS  Google Scholar 

  48. Sagheer FAA, Al-Sughayer MA, Muslim S, Elsabee MZ (2009) Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydr Polym 77:410–419. https://doi.org/10.1016/j.carbpol.2009.01.032

    Article  CAS  Google Scholar 

  49. Baran T, Mujtaba M, Duman F et al (2017) An inclusive physicochemical comparison of natural and synthetic chitin films. Int J Biol Macromol 106:1062–1070. https://doi.org/10.1016/j.ijbiomac.2017.08.108

    Article  CAS  PubMed  Google Scholar 

  50. Majtán J, Bíliková K, Markovič O et al (2007) Isolation and characterization of chitin from bumblebee (Bombus terrestris). Int J Biol Macromol 40:237–241. https://doi.org/10.1016/j.ijbiomac.2006.07.010

    Article  CAS  PubMed  Google Scholar 

  51. Kaya M, Erdogan S, Mol A, Baran T (2015) Comparison of chitin structures isolated from seven Orthoptera species. Int J Biol Macromol 72:797–805. https://doi.org/10.1016/j.ijbiomac.2014.09.034

    Article  CAS  PubMed  Google Scholar 

  52. Paulino AT, Simionato JI, Garcia JC, Nozaki J (2006) Characterization of chitosan and chitin produced from silkworm crysalides. Carbohydr Polym 64:98–103. https://doi.org/10.1016/j.carbpol.2005.10.032

    Article  CAS  Google Scholar 

  53. Quan W-Y, Dong J-J, Ou C-Y et al (2010) Effect of cupric ion on thermal degradation of quaternized chitosan. Carbohydr Polym 81:182–187. https://doi.org/10.1016/j.carbpol.2010.02.049

    Article  CAS  Google Scholar 

  54. Iqbal MS, Akbar J, Saghir S et al (2011) Thermal studies of plant carbohydrate polymer hydrogels. Carbohydr Polym 86:1775–1783. https://doi.org/10.1016/j.carbpol.2011.07.020

    Article  CAS  Google Scholar 

  55. Asaroglu M, Baran T, Sezen G et al (2014) Extraction and characterization of α-Chitin and Chitosan from six different aquatic invertebrates. Food Biophys 9:145–157. https://doi.org/10.1007/s11483-013-9327-y

    Article  Google Scholar 

  56. Kaya M, Baran T, Erdoʇan S et al (2014) Physicochemical comparison of chitin and chitosan obtained from larvae and adult Colorado potato beetle (Leptinotarsa decemlineata). Mater Sci Eng, C 45:72–81. https://doi.org/10.1016/j.msec.2014.09.004

    Article  CAS  Google Scholar 

  57. Union I, Pure OF, Chemistry A (1985) Reporting physisorption data for. Area 57:603–619

    Google Scholar 

  58. Hwang N, Barron AR (2001) BET surface area analysis of nanoparticles. J Hist Philos 39:445–446. https://doi.org/10.1353/hph.2003.0120

    Article  Google Scholar 

  59. Aranaz I, Mengibar M, Harris R, Panos I, Miralles B, Acosta N, Galed G, Heras A, Aranaz I et al (2009) Functional characterization of chitin and chitosan. Curr Chem Biol 3:203–230

    CAS  Google Scholar 

  60. Wang G, Xin Y, Uyama H (2015) Facile fabrication of mesoporous poly(ethylene-co-vinyl alcohol)/chitosan blend monoliths. Carbohydr Polym 132:345–350. https://doi.org/10.1016/j.carbpol.2015.06.040

    Article  CAS  PubMed  Google Scholar 

  61. Zazycki MA, Borba PA, Silva RNF et al (2019) Chitin derived biochar as an alternative adsorbent to treat colored effluents containing methyl violet dye. Adv Powder Technol 30:1494–1503. https://doi.org/10.1016/j.apt.2019.04.026

    Article  CAS  Google Scholar 

  62. Côrtes LN, Tanabe EH, Bertuol DA, Dotto GL (2015) Biosorption of gold from computer microprocessor leachate solutions using chitin. Waste Manag 45:272–279. https://doi.org/10.1016/j.wasman.2015.07.016

    Article  CAS  PubMed  Google Scholar 

  63. Kaya M, Akyuz B, Bulut E et al (2016) Chitosan nanofiber production from Drosophila by electrospinning. Int J Biol Macromol 92:49–55. https://doi.org/10.1016/j.ijbiomac.2016.07.021

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the Department of Biotechnology (Govt. of India), Biotechnology Industry Research Assistance Council (BIRAC) and The Bill and Melinda Gates Foundation (BMGF) under the grant number BIRAC/GCI/0066/02/13-RTTC and Ministry of Human Resource Development (MHRD), Government of India under Swachhta action plan (SAP), grant number ICSR/SAP/2018/SN-1. The first author of this article wants to thank Ministry of Human Resource Development (MHRD) for providing scholarship for carrying out her doctoral research work. The authors want to thank Prof. Deepak Bornare (Head (operations), Center for Analytical Research & Studies, MIT, Aurangabad (India)) for helping with the FTIR sample analysis. The authors also want to thank Mr. Adarsh Kumar of Materials Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, India for helping with the BET isotherm studies. The authors are grateful to the anonymous reviewer for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudipta Sarkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11 kb)

Supplementary material 2 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purkayastha, D., Sarkar, S. Physicochemical Structure Analysis of Chitin Extracted from Pupa Exuviae and Dead Imago of Wild Black Soldier Fly (Hermetia illucens). J Polym Environ 28, 445–457 (2020). https://doi.org/10.1007/s10924-019-01620-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01620-x

Keywords

Navigation