Skip to main content
Log in

Bio-based Poly(ɛ-caprolactone) from Soybean-Oil Derived Polyol via Ring-Opening Polymerization

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this work, a new series of bio-based poly(ɛ-caprolactone)s (SBO-PCLs) is synthesized through ring-opening polymerization (ROP) of ɛ-caprolactone (ɛ-CL) using stannous octoate as a catalyst and hydroxylated soybean oil (SBO-OH) as a macro-initiator. For this purpose, firstly, epoxy groups of epoxidized soybean oil (ESBO) are converted to hydroxyl functionalities to be used for ROP of ɛ-CL. Then, after the ROP of ɛ-CL using SBO-OH; wettability, biodegradability and thermal properties of the obtained SBO-PCLs are evaluated in terms of loading ratio of ɛ-CL monomer ([OH]/[ɛ-CL] (n/n) = 1:0.5; 1:1 and 1:2). The obtained SBO-PCLs and their intermediates are characterized by Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy (1H-NMR), gel permeation chromatography (GPC), water contact angle measurement (WCA), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and enzymatic degradation experiment. SBO-PCL with higher PCL molar ratio shows the lower biodegradability, but higher hydrophobicity and thermal properties compared to others. Thus, it is clear that the successful syntheses of SBO-PCLs encourage the use of these polymers as promising materials for scientists working on PCL applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Babu RP, O’connor K, Seeram R (2013) Progr Biomater 2:8

    Article  Google Scholar 

  2. de Mesquita JP, Donnici CL, Pereira FV (2010) Biomacromol 11:473

    Article  Google Scholar 

  3. Wu R-L, Wang X-L, Li F, Li H-Z, Wang Y-Z (2009) Bioresour Technol 100:2569

    Article  CAS  Google Scholar 

  4. Cuq B, Gontard N, Guilbert S (1998) Cereal Chem 75:1

    Article  CAS  Google Scholar 

  5. Acik G, Yildiran S, Kok G, Salman Y, Tasdelen M (2017) Express Polym Lett 11:799

    Article  CAS  Google Scholar 

  6. Weiss M, Haufe J, Carus M, Brandão M, Bringezu S, Hermann B, Patel MK (2012) J Ind Ecol 16:S169

    Article  CAS  Google Scholar 

  7. Uysal N, Acik G, Tasdelen MA (2017) Polym Int 66:999

    Article  CAS  Google Scholar 

  8. Xia Y, Larock RC (2010) Green Chem 12:1893

    Article  CAS  Google Scholar 

  9. Allı S, Aydın RST, Allı A, Hazer B (2015) J Am Oil Chem Soc 92:449

    Article  Google Scholar 

  10. Allı A, Allı S, Becer CR, Hazer B (2014) J Am Oil Chem Soc 91:849

    Article  Google Scholar 

  11. Medeiros AM, Machado F, Bourgeat‐Lami E, Rubim JC, McKenna TF (2018) Macromol Mater Eng 1800449

  12. Neves J, Valadares L, Machado F (2018) Colloids Interfaces 2:46

    Article  Google Scholar 

  13. Zlatanić A, Lava C, Zhang W, Petrović ZS (2004) J Polym Sci Part B 42:809

    Article  Google Scholar 

  14. Zhao M, Wang Y, Liu L, Liu L, Chen M, Zhang C, Lu Q (2018) Polym Compos 39:4355

    Article  CAS  Google Scholar 

  15. Decostanzi M, Lomège J, Ecochard Y, Mora A-S, Negrell C, Caillol S (2018) Progr Org Coat 124:147

    Article  CAS  Google Scholar 

  16. Magami SM, Oldring PK, Castle L, Guthrie JT (2015) Progr Org Coat 78:325

    Article  CAS  Google Scholar 

  17. Igwe I, Ogbobe O (2000) J Appl Polym Sci 75:1441

    Article  CAS  Google Scholar 

  18. Meier MA, Metzger JO, Schubert US (2007) Chem Soc Rev 36:1788

    Article  CAS  Google Scholar 

  19. Sawpan MA (2018) J Polym Res 25:184

    Article  Google Scholar 

  20. Pfister DP, Xia Y, Larock RC (2011) Chemsuschem 4:703

    Article  CAS  Google Scholar 

  21. Goodrum JW, Geller DP (2005) Biores Technol 96:851

    Article  CAS  Google Scholar 

  22. Zhao H (2018) J Chem Technol Biotechnol 93:9

    Article  CAS  Google Scholar 

  23. Labet M, Thielemans W (2009) Chem Soc Rev 38:3484

    Article  CAS  Google Scholar 

  24. Xu Q, Ren X, Chang Y, Wang J, Yu L, Dean K (2004) J Appl Polym Sci 94:593

    Article  CAS  Google Scholar 

  25. Coombes A, Rizzi S, Williamson M, Barralet J, Downes S, Wallace W (2004) Biomaterials 25:315

    Article  CAS  Google Scholar 

  26. Jones DS, McLaughlin DW, McCoy CP, Gorman SP (2005) Biomaterials 26:1761

    Article  CAS  Google Scholar 

  27. Kweon H, Yoo MK, Park IK, Kim TH, Lee HC, Lee H-S, Oh J-S, Akaike T, Cho C-S (2003) Biomaterials 24:801

    Article  CAS  Google Scholar 

  28. Reddi AH (2000) Tissue Eng 6:351

    Article  CAS  Google Scholar 

  29. Tsujimoto T, Takayama T, Uyama H (2015) Polymers 7:2165

    Article  CAS  Google Scholar 

  30. Lligadas G, Ronda J, Galia M, Biermann U, Metzger J (2006) Journal of Polymer Science Part A 44:634

    Article  CAS  Google Scholar 

  31. Arutchelvi J, Sudhakar M, Arkatkar A, Doble M, Bhaduri S, Uppara PV (2008)

  32. Acik G, Altinkok C, Tasdelen MA (2018) Journal of Polymer Science Part A 56:2595

    Article  CAS  Google Scholar 

  33. Acik G, Kamaci M, Altinkok C, Karabulut HF, Tasdelen MA (2018) Prog Org Coat 123:261

    Article  CAS  Google Scholar 

  34. Henna P, Larock RC (2009) J Appl Polym Sci 112:1788

    Article  CAS  Google Scholar 

  35. Adhvaryu A, Liu Z, Erhan S (2005) Ind Crops Prod 21:113

    Article  CAS  Google Scholar 

  36. Adhvaryu A, Erhan S (2002) Ind Crops Prod 15:247

    Article  CAS  Google Scholar 

  37. Dai H, Yang L, Lin B, Wang C, Shi G (2009) J Am Oil Chem Soc 86:261

    Article  CAS  Google Scholar 

  38. Acik G, Cansoy CE, Kamaci M (2019) Colloid Polym Sci 297:77

    Article  CAS  Google Scholar 

  39. Vlad S, Spiridon I, Grigoras CV, Drobota M, Nistor A (2009) Polymers. doi:10.1515/epoly.2009.9.1.37

  40. Leja K, Lewandowicz G (2010) Polish J Environ Stud 19:255–266

    Google Scholar 

  41. Shogren RL, Petrovic Z, Liu Z, Erhan SZ (2004) J Polym Environ 12:173

    Article  CAS  Google Scholar 

  42. Wang Y-H, Wang W-H, Zhang Z, Xu L, Li P (2016) Eur Polym J 75:36

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research did not received any specific grant from funding agencies in the public, commercial or not for profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gokhan Acik.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acik, G. Bio-based Poly(ɛ-caprolactone) from Soybean-Oil Derived Polyol via Ring-Opening Polymerization. J Polym Environ 28, 668–675 (2020). https://doi.org/10.1007/s10924-019-01597-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01597-7

Keywords

Navigation