Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Superconductor–semiconductor hybrid-circuit quantum electrodynamics

Abstract

Light–matter interactions at the single-particle level have generally been explored in the context of atomic, molecular and optical physics. Recent advances motivated by quantum information science have made it possible to explore coherent interactions between photons trapped in superconducting cavities and superconducting qubits. In the context of quantum information, the study of coherent interactions between single charges and spins in semiconductors and photons trapped in superconducting cavities is very relevant, as the spin degree of freedom has a coherence time that can potentially exceed that of superconducting qubits, and cavity photons can serve to effectively overcome the limitation of short-range interaction inherent to spin qubits. Here, we review recent advances in hybrid ‘super–semi’ quantum systems, which coherently couple superconducting cavities to semiconductor quantum dots. We first present an overview of the physics governing the behaviour of superconducting cavities, semiconductor quantum dots and their modes of interaction. We then survey experimental progress in the field, focusing on recent demonstrations of cavity quantum electrodynamics in the strong-coupling regime with a single charge and a single spin. Finally, we broadly discuss promising avenues of future research, including the use of super–semi systems to investigate phenomena in condensed-matter physics.

Key points

  • Hybrid quantum systems integrate the most desirable properties of semiconductor spin qubits and superconducting quantum devices.

  • Single electron charges can be coherently coupled to single microwave-frequency photons.

  • Using spin–orbit interactions, a single electron spin can be coherently coupled to a single photon.

  • Coherent charge–photon and spin–photon coupling may enable long-range qubit interactions that are mediated by microwave-frequency photons.

  • Hybrid quantum devices are also finding utility as sensitive probes of Kondo and valley physics, and perhaps of Majorana fermions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cavity quantum electrodynamics.
Fig. 2: Constructing cavity-coupled double quantum dots.
Fig. 3: Strong charge–photon coupling.
Fig. 4: Strong spin–photon coupling.
Fig. 5: Future directions in ‘super–semi’ circuit QED.

Similar content being viewed by others

References

  1. Haroche, S. & Kleppner, D. Cavity quantum electrodynamics. Phys. Today 42, 24–30 (1989).

    Article  ADS  Google Scholar 

  2. Miller, R. et al. Trapped atoms in cavity QED: coupling quantized light and matter. J. Phys. B 38, S551–S565 (2005).

    Article  Google Scholar 

  3. Walther, H., Varcoe, B. T. H., Englert, B.-G. & Becker, T. Cavity quantum electrodynamics. Rep. Prog. Phys. 69, 1325–1382 (2006).

    ADS  Google Scholar 

  4. Haroche, S. & Raimond, J.-M. Exploring the Quantum: Atoms, Cavities, and Photons (Oxford Univ. Press, 2006).

  5. Brune, M. et al. Observing the progressive decoherence of the “meter” in a quantum measurement. Phys. Rev. Lett. 77, 4887–4890 (1996).

    Article  ADS  Google Scholar 

  6. Reithmaier, J. P. et al. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 432, 197–200 (2004).

    Article  ADS  Google Scholar 

  7. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).

    Article  ADS  Google Scholar 

  8. Peter, E. et al. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95, 067401 (2005).

    Article  ADS  Google Scholar 

  9. Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004).

    Article  ADS  Google Scholar 

  10. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).

    Article  ADS  Google Scholar 

  11. Childress, L., Sørensen, A. S. & Lukin, M. D. Mesoscopic cavity quantum electrodynamics with quantum dots. Phys. Rev. A 69, 042302 (2004).

    Article  ADS  Google Scholar 

  12. Burkard, G. & Imamoglu, A. Ultra-long-distance interaction between spin qubits. Phys. Rev. B 74, 041307 (2006).

    Article  ADS  Google Scholar 

  13. Trif, M., Golovach, V. N. & Loss, D. Spin dynamics in InAs nanowire quantum dots coupled to a transmission line. Phys. Rev. B 77, 045434 (2008).

    Article  ADS  Google Scholar 

  14. Majer, J. et al. Coupling superconducting qubits via a cavity bus. Nature 449, 443–447 (2007).

    Article  ADS  Google Scholar 

  15. Sillanpää, M. A., Park, J. I. & Simmonds, R. W. Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature 449, 438–442 (2007).

    Article  ADS  Google Scholar 

  16. Neeley, M. et al. Generation of three-qubit entangled states using superconducting phase qubits. Nature 467, 570–573 (2010).

    Article  ADS  Google Scholar 

  17. Reed, M. D. et al. Realization of three-qubit quantum error correction with superconducting circuits. Nature 482, 382–385 (2012).

    Article  ADS  Google Scholar 

  18. Fedorov, A., Steffen, L., Baur, M., da Silva, M. P. & Wallraff, A. Implementation of a Toffoli gate with superconducting circuits. Nature 481, 170–172 (2012).

    Article  ADS  Google Scholar 

  19. Saira, O. P. et al. Entanglement genesis by ancilla-based parity measurement in 2D circuit QED. Phys. Rev. Lett. 112, 070502 (2014).

    Article  ADS  Google Scholar 

  20. DiCarlo, L. et al. Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature 467, 574–578 (2010).

    Article  ADS  Google Scholar 

  21. Wallraff, A. et al. Approaching unit visibility for control of a superconducting qubit with dispersive readout. Phys. Rev. Lett. 95, 060501 (2005).

    Article  ADS  Google Scholar 

  22. Reed, M. D. et al. High-fidelity readout in circuit quantum electrodynamics using the Jaynes–Cummings nonlinearity. Phys. Rev. Lett. 105, 173601 (2010).

    Article  ADS  Google Scholar 

  23. Heinsoo, J. et al. Rapid high-fidelity multiplexed readout of superconducting qubits. Phys. Rev. Appl. 10, 034040 (2018).

    Article  ADS  Google Scholar 

  24. Houck, A. A. et al. Generating single microwave photons in a circuit. Nature 449, 328–340 (2007).

    Article  ADS  Google Scholar 

  25. Hofheinz, M. et al. Generation of Fock states in a superconducting quantum circuit. Nature 454, 310–314 (2008).

    Article  ADS  Google Scholar 

  26. Hofheinz, M. et al. Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459, 546–549 (2009).

    Article  ADS  Google Scholar 

  27. Eichler, C. et al. Experimental state tomography of intinerant single microwave photons. Phys. Rev. Lett. 106, 220503 (2011).

    Article  ADS  Google Scholar 

  28. Vlastakis, B. et al. Deterministically encoding quantum information using 100-photon Schrödinger cat states. Science 342, 607–610 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Wang, C. et al. A Schrödinger cat living in two boxes. Science 352, 1087–1091 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Ofek, N. et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441–445 (2016).

    Article  ADS  Google Scholar 

  31. Riste, D., Bultink, C. C., Lehnert, K. W. & DiCarlo, L. Feedback control of a solid-state qubit using high-fidelity projective measurement. Phys. Rev. Lett. 109, 240502 (2012).

    Article  ADS  Google Scholar 

  32. Vijay, R. et al. Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback. Nature 490, 77–80 (2012).

    Article  ADS  Google Scholar 

  33. Campagne-Ibarcq, P. et al. Persistent control of a superconducting qubit by stroboscopic measurement feedback. Phy. Rev. X 3, 021008 (2013).

    Google Scholar 

  34. Murch, K. W., Weber, S. J., Macklin, C. & Siddiqi, I. Observing single quantum trajectories of a superconducting quantum bit. Nature 502, 211–214 (2013).

    Article  ADS  Google Scholar 

  35. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    Article  ADS  Google Scholar 

  36. Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).

    Article  ADS  Google Scholar 

  37. Tyryshkin, A. M. et al. Electron spin coherence exceeding seconds in high-purity silicon. Nat. Mater. 11, 143–147 (2012).

    Article  ADS  Google Scholar 

  38. Maurer, P. C. et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012).

    Article  ADS  Google Scholar 

  39. Saeedi, K. et al. Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28. Science 342, 830–833 (2013).

    Article  ADS  Google Scholar 

  40. Mi, X., Cady, J. V., Zajac, D. M., Deelman, P. W. & Petta, J. R. Strong coupling of a single electron in silicon to a microwave photon. Science 355, 156–158 (2017).

    Article  ADS  Google Scholar 

  41. Stockklauser, A. et al. Strong coupling cavity QED with gate-defined double quantum dots enabled by a high impedance resonator. Phys. Rev. X 7, 011030 (2017).

    Google Scholar 

  42. Mi, X. et al. A coherent spin–photon interface in silicon. Nature 555, 599–603 (2018).

    Article  ADS  Google Scholar 

  43. Samkharadze, N. et al. Strong spin-photon coupling in silicon. Science 359, 1123–1127 (2018).

    Article  ADS  Google Scholar 

  44. Landig, A. J. et al. Coherent spin–photon coupling using a resonant exchange qubit. Nature 560, 179–184 (2018).

    Article  ADS  Google Scholar 

  45. Hulet, R. G., Hilfer, E. S. & Kleppner, D. Inhibited spontaneous emission by a Rydberg atom. Phys. Rev. Lett. 55, 2137–2140 (1985).

    Article  ADS  Google Scholar 

  46. Jhe, W. et al. Suppression of spontaneous decay at optical frequencies: test of vacuum-field anisotropy in confined space. Phys. Rev. Lett. 58, 666–669 (1987).

    Article  ADS  Google Scholar 

  47. Thompson, R. J., Rempe, G. & Kimble, H. J. Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 68, 1132–1135 (1992).

    Article  ADS  Google Scholar 

  48. Englund, D. et al. Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity. Nano Lett. 10, 3922–3926 (2010).

    Article  ADS  Google Scholar 

  49. Sipahigil, A. et al. An integrated diamond nanophotonics platform for quantum-optical networks. Science 354, 847–850 (2016).

    Article  ADS  Google Scholar 

  50. Hayashi, T., Fujisawa, T., Cheong, H. D., Jeong, Y. H. & Hirayama, Y. Coherent manipulation of electronic states in a double quantum dot. Phys. Rev. Lett. 91, 226804 (2003).

    Article  ADS  Google Scholar 

  51. Petta, J. R., Johnson, A. C., Marcus, C. M., Hanson, M. P. & Gossard, A. C. Manipulation of a single charge in a double quantum dot. Phys. Rev. Lett. 93, 186802 (2004).

    Article  ADS  Google Scholar 

  52. Petersson, K. D., Petta, J. R., Lu, H. & Gossard, A. C. Quantum coherence in a one-electron semiconductor charge qubit. Phys. Rev. Lett. 105, 246804 (2010).

    Article  ADS  Google Scholar 

  53. Koppens, F. H. L. et al. Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766–771 (2006).

    Article  ADS  Google Scholar 

  54. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    Article  ADS  Google Scholar 

  55. Nakamura, Y., Pashkin, Y. A. & Tsai, J. S. Coherent control of macroscopic quantum states in a single Cooper-pair box. Nature 398, 786–788 (1999).

    Article  ADS  Google Scholar 

  56. Vion, D. et al. Manipulating the quantum state of an electrical circuit. Science 296, 886–889 (2002).

    Article  ADS  Google Scholar 

  57. Martinis, J. M., Nam, S., Aumentado, J. & Urbana, C. Rabi oscillations in a large Josephson-junction qubit. Phys. Rev. Lett. 89, 117901 (2002).

    Article  ADS  Google Scholar 

  58. Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

    Article  ADS  Google Scholar 

  59. Clarke, J. & Willhelm, F. K. Superconducting quantum bits. Nature 453, 1031–1042 (2008).

    Article  ADS  Google Scholar 

  60. Krantz, P. et al. A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019).

    Article  ADS  Google Scholar 

  61. Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013).

    Article  ADS  Google Scholar 

  62. Xiang, Z.-L., Ashhab, S., You, J. Q. & Nori, F. Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623–653 (2013).

    Article  ADS  Google Scholar 

  63. van der Wiel, W. G. et al. Electron transport through double quantum dots. Rev. Mod. Phys. 75, 1–22 (2002).

    Article  ADS  Google Scholar 

  64. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

    Article  ADS  Google Scholar 

  65. Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155–1208 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Walls, D. & Milburn, G. Quantum Optics (Springer, 2008).

  67. Petersson, K. D. et al. Circuit quantum electrodynamics with a spin qubit. Nature 490, 380–383 (2012).

    Article  ADS  Google Scholar 

  68. Petersson, K. D. et al. Charge and spin state readout of a double quantum dot coupled to a resonator. Nano Lett. 10, 2789–2793 (2010).

    Article  ADS  Google Scholar 

  69. Chorley, S. J. et al. Measuring the complex admittance of a carbon nanotube double quantum dot. Phys. Rev. Lett. 108, 036802 (2012).

    Article  ADS  Google Scholar 

  70. Schroer, M. D., Jung, M., Petersson, K. D. & Petta, J. R. Radio frequency charge parity meter. Phys. Rev. Lett. 109, 166804 (2012).

    Article  ADS  Google Scholar 

  71. Jung, M., Schroer, M. D., Petersson, K. D. & Petta, J. R. Radio frequency charge sensing in InAs nanowire double quantum dots. Appl. Phys. Lett. 100, 253508 (2012).

    Article  ADS  Google Scholar 

  72. Frey, T. et al. Quantum dot admittance probed at microwave frequencies with an on-chip resonator. Phys. Rev. B 86, 115303 (2012).

    Article  ADS  Google Scholar 

  73. Raimond, J. M., Brune, M. & Haroche, S. Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Kaluzny, Y., Goy, P., Gross, M., Raimond, J. M. & Haroche, S. Observation of self-induced Rabi oscillations in two-level atoms excited inside a resonant cavity: the ringing regime of superradiance. Phys. Rev. Lett. 51, 1175–1178 (1983).

    Article  ADS  Google Scholar 

  75. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  ADS  Google Scholar 

  76. Frey, T. et al. Dipole coupling of a double quantum dot to a microwave resonator. Phys. Rev. Lett. 108, 046807 (2012).

    Article  ADS  Google Scholar 

  77. Toida, H., Nakajima, T. & Komiyama, S. Vacuum Rabi splitting in a semiconductor circuit QED system. Phys. Rev. Lett. 110, 066802 (2013).

    Article  ADS  Google Scholar 

  78. Stockklauser, A. et al. Microwave emission from hybridized states in a semiconductor charge qubit. Phys. Rev. Lett. 115, 046802 (2015).

    Article  ADS  Google Scholar 

  79. Basset, J. et al. Single-electron double quantum dot dipole-coupled to a single photonic mode. Phys. Rev. B 88, 125312 (2013).

    Article  ADS  Google Scholar 

  80. Liu, Y.-Y. et al. Semiconductor double quantum dot micromaser. Science 347, 285–287 (2015).

    Article  ADS  Google Scholar 

  81. Deng, G.-W. et al. Charge number dependence of the dephasing rates of a graphene double quantum dot in a circuit QED architecture. Phys. Rev. Lett. 115, 126804 (2015).

    Article  ADS  Google Scholar 

  82. Deng, G.-W. et al. Coupling two distant double quantum dots with a microwave resonator. Nano Lett. 15, 6620–6625 (2015).

    Article  ADS  Google Scholar 

  83. Delbecq, M. R. et al. Coupling a quantum dot, fermionic leads, and a microwave cavity on a chip. Phys. Rev. Lett. 107, 256804 (2011).

    Article  ADS  Google Scholar 

  84. Viennot, J. J., Delbecq, M. R., Dartiailh, M. C., Cottet, A. & Kontos, T. Out-of-equilibrium charge dynamics in a hybrid circuit quantum electrodynamics architecture. Phys. Rev. B 89, 165404 (2014).

    Article  ADS  Google Scholar 

  85. Mi, X. et al. Circuit quantum electrodynamics architecture for gate-defined quantum dots in silicon. Appl. Phys. Lett. 110, 043502 (2017).

    Article  ADS  Google Scholar 

  86. Schuster, D. I. et al. Resolving photon number states in a superconducting circuit. Nature 445, 515–518 (2007).

    Article  ADS  Google Scholar 

  87. Milonni, P. W. The Quantum Vacuum: An Introduction to Quantum Electrodynamics (Academic, 1994).

  88. Day, P. K., LeDuc, H. G., Mazin, B. A., Vayonakis, A. & Zmuidzinas, J. A broadband superconducting detector suitable for use in large arrays. Nature 425, 817–821 (2003).

    Article  ADS  Google Scholar 

  89. Göppl, M. et al. Coplanar waveguide resonators for circuit quantum electrodynamics. J. Appl. Phys. 104, 113904 (2008).

    Article  ADS  Google Scholar 

  90. Stehlik, J. et al. Fast charge sensing of a cavity-coupled double quantum dot using a Josephson parametric amplifier. Phys. Rev. Appl. 4, 014018 (2015).

    Article  ADS  Google Scholar 

  91. Samkharadze, N. et al. High-kinetic-inductance superconducting nanowire resonators for circuit QED in a magnetic field. Phys. Rev. Appl. 5, 044004 (2016).

    Article  ADS  Google Scholar 

  92. Viennot, J. J., Palomo, J. & Kontos, T. Stamping single wall nanotubes for circuit quantum electrodynamics. Appl. Phys. Lett. 104, 113108 (2014).

    Article  ADS  Google Scholar 

  93. Kim, D. et al. Microwave-driven coherent operation of a semiconductor quantum dot charge qubit. Nat. Nanotechnol. 10, 243–247 (2015).

    Article  ADS  Google Scholar 

  94. Wallraff, A., Stockklauser, A., Ihn, T., Petta, J. R. & Blais, A. Comment on “Vacuum Rabi splitting in a semiconductor circuit QED system”. Phys. Rev. Lett. 111, 249701 (2013).

    Article  ADS  Google Scholar 

  95. Basset, J. et al. Evaluating charge noise acting on semiconductor quantum dots in the circuit quantum electrodynamics architecture. Appl. Phys. Lett. 105, 063105 (2014).

    Article  ADS  Google Scholar 

  96. Field, M. et al. Measurements of Coulomb blockade with a noninvasive voltage probe. Phys. Rev. Lett. 70, 1311–1314 (1993).

    Article  ADS  Google Scholar 

  97. Sprinzak, D., Ji, Y., Heiblum, M., Mahalu, D. & Shtrikman, H. Charge distribution in a Kondo-correlated quantum dot. Phys. Rev. Lett. 88, 176805 (2002).

    Article  ADS  Google Scholar 

  98. Elzerman, J. M. et al. Few-electron quantum dot circuit with integrated charge read out. Phys. Rev. B 67, 161308 (2003).

    Article  ADS  Google Scholar 

  99. Schuster, D. I. et al. ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. Phys. Rev. Lett. 94, 123602 (2005).

    Article  ADS  Google Scholar 

  100. Connors E. J., Nelson J. J., Qiao H., Edge L. F. & Nichol J. M. Low-frequency charge noise in Si/SiGe quantum dots. Phys. Rev. B 100, 165305 (2019).

    Article  ADS  Google Scholar 

  101. Bruhat, L. E. et al. Circuit QED with a quantum-dot charge qubit dressed by Cooper pairs. Phys. Rev. B 98, 155313 (2018).

    Article  ADS  Google Scholar 

  102. Kim, D. et al. Quantum control and process tomography of a semiconductor quantum dot hybrid qubit. Nature 511, 70–74 (2014).

    Article  ADS  Google Scholar 

  103. Mi, X., Kohler, S. & Petta, J. R. Landau-Zener interferometry of valley-orbit states in Si/SiGe double quantum dots. Phys. Rev. B 98, 161404(R) (2018).

    Article  ADS  Google Scholar 

  104. Bertrand, B. et al. Quantum manipulation of two-electron spin states in isolated double quantum dots. Phys. Rev. Lett. 115, 096801 (2015).

    Article  ADS  Google Scholar 

  105. Reed, M. D. et al. Reduced sensitivity to charge noise in semiconductor spin qubits via symmetric operation. Phys. Rev. Lett. 116, 110402 (2016).

    Article  ADS  Google Scholar 

  106. Martins, F. et al. Noise suppression using symmetric exchange gates in spin qubits. Phys. Rev. Lett. 116, 116801 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  107. Scarlino, P. et al. All-microwave control and dispersive readout of gate-defined quantum dot qubits in circuit quantum electrodynamics. Phys. Rev. Lett. 122, 206802 (2019).

    Article  ADS  Google Scholar 

  108. van Woerkom, D. J. et al. Microwave photon-mediated interactions between semiconductor qubits. Phys. Rev. X 8, 041018 (2018).

    Google Scholar 

  109. Kawakami, E. et al. Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. Nat. Nanotechnol. 9, 666–670 (2014).

    Article  ADS  Google Scholar 

  110. Veldhorst, M. et al. An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 9, 981–985 (2014).

    Article  ADS  Google Scholar 

  111. Yoneda, J. et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nat. Nanotechnol. 13, 102–106 (2018).

    Article  ADS  Google Scholar 

  112. Zajac, D. M. et al. Resonantly driven CNOT gate for electron spins. Science 359, 439–442 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  113. Muhonen, J. T. et al. Storing quantum information for 30 seconds in a nanoelectronic device. Nat. Nanotechnol. 9, 986–991 (2014).

    Article  ADS  Google Scholar 

  114. Taylor, J. M., Srinivasa, V. & Medford, J. Electrically protected resonant exchange qubits in triple quantum dots. Phys. Rev. Lett. 111, 050502 (2013).

    Article  ADS  Google Scholar 

  115. Russ, M. & Burkard, G. Long distance coupling of resonant exchange qubits. Phys. Rev. B 92, 205412 (2015).

    Article  ADS  Google Scholar 

  116. Golovach, V. N., Borhani, M. & Loss, D. Electric-dipole-induced spin resonance in quantum dots. Phys. Rev. B 74, 165319 (2006).

    Article  ADS  Google Scholar 

  117. Rashba, E. I. & Efros, A. L. Orbital mechanisms of electron-spin manipulation by an electric field. Phys. Rev. Lett. 91, 126405 (2003).

    Article  ADS  Google Scholar 

  118. Kloeffel, C., Trif, M., Stano, P. & Loss, D. Circuit QED with hole-spin qubits in Ge/Si nanowire quantum dots. Phys. Rev. B 88, 241405 (2013).

    Article  ADS  Google Scholar 

  119. Nowack, K. C., Koppens, F. H. L., Nazarov, Y. V. & Vandersypen, L. M. K. Coherent control of a single electron spin with electric fields. Science 318, 1430–1433 (2007).

    Article  ADS  Google Scholar 

  120. Nadj-Perge, S., Frolov, S. M., Bakkers, E. & Kouwenhoven, L. P. Spin–orbit qubit in a semiconductor nanowire. Nature 468, 1084–1087 (2010).

    Article  ADS  Google Scholar 

  121. Schroer, M. D., Petersson, K. D., Jung, M. & Petta, J. R. Field tuning the g factor in InAs nanowire double quantum dots. Phys. Rev. Lett. 107, 176811 (2011).

    Article  ADS  Google Scholar 

  122. Benito, M., Mi, X., Taylor, J. M., Petta, J. R. & Burkard, G. Input-output theory for spin-photon coupling in Si double quantum dots. Phys. Rev. B 96, 235434 (2017).

    Article  ADS  Google Scholar 

  123. Brunner, R. et al. Two-qubit gate of combined single-spin rotation and interdot spin exchange in a double quantum dot. Phys. Rev. Lett. 107, 146801 (2011).

    Article  ADS  Google Scholar 

  124. Nakajima, T. et al. Robust single-shot spin measurement with 99.5% fidelity in a quantum dot array. Phys. Rev. Lett. 119, 017701 (2017).

    Article  ADS  Google Scholar 

  125. Pioro-Ladrière, M. et al. Electrically driven single-electron spin resonance in a slanting Zeeman field. Nat. Phys. 4, 776–779 (2008).

    Article  Google Scholar 

  126. Tokura, Y., van der Wiel, W. G., Obata, T. & Tarucha, S. Coherent single electron spin control in a slanting Zeeman field. Phys. Rev. Lett. 96, 047202 (2006).

    Article  ADS  Google Scholar 

  127. Félix, B., Dany, L.-Q., Coish, W. A. & Michel, P.-L. Coupling a single electron spin to a microwave resonator: controlling transverse and longitudinal couplings. Nanotechnology 27, 464003 (2016).

    Article  Google Scholar 

  128. Cottet, A. & Kontos, T. Spin quantum bit with ferromagnetic contacts for circuit QED. Phys. Rev. Lett. 105, 160502 (2010).

    Article  ADS  Google Scholar 

  129. Hu, X., Liu, Y.-x. & Nori, F. Strong coupling of a spin qubit to a superconducting stripline cavity. Phys. Rev. B 86, 035314 (2012).

    Article  ADS  Google Scholar 

  130. Imamoğlu, A. Cavity QED based on collective magnetic dipole coupling: spin ensembles as hybrid two-level systems. Phys. Rev. Lett. 102, 083602 (2009).

    Article  ADS  Google Scholar 

  131. Schuster, D. I. et al. High-cooperativity coupling of electron-spin ensembles to superconducting cavities. Phys. Rev. Lett. 105, 140501 (2010).

    Article  ADS  Google Scholar 

  132. Amsüss, R. et al. Cavity QED with magnetically coupled collective spin states. Phys. Rev. Lett. 107, 060502 (2011).

    Article  ADS  Google Scholar 

  133. Bienfait, A. et al. Controlling spin relaxation with a cavity. Nature 531, 74–77 (2016).

    Article  ADS  Google Scholar 

  134. Eichler, C., Sigillito, A. J., Lyon, S. A. & Petta, J. R. Electron spin resonance at the level of 104 spins using low impedance superconducting resonators. Phys. Rev. Lett. 118, 037701 (2017).

    Article  ADS  Google Scholar 

  135. Probst, S. et al. Inductive-detection electron-spin resonance spectroscopy with 65 spins/√Hz sensitivity. Appl. Phys. Lett. 111, 202604 (2017).

    Article  ADS  Google Scholar 

  136. Jin, P.-Q., Marthaler, M., Shnirman, A. & Schön, G. Strong coupling of spin qubits to a transmission line resonator. Phys. Rev. Lett. 108, 190506 (2012).

    Article  ADS  Google Scholar 

  137. Srinivasa, V., Taylor, J. M. & Tahan, C. Entangling distant resonant exchange qubits via circuit quantum electrodynamics. Phys. Rev. B 94, 205421 (2016).

    Article  ADS  Google Scholar 

  138. Viennot, J. J., Dartiailh, M. C., Cottet, A. & Kontos, T. Coherent coupling of a single spin to microwave cavity photons. Science 349, 408–411 (2015).

    Article  ADS  Google Scholar 

  139. Takeda, K. et al. A fault-tolerant addressable spin qubit in a natural silicon quantum dot. Sci. Adv. 2, e1600694 (2016).

    Article  ADS  Google Scholar 

  140. Watzinger, H. et al. A germanium hole spin qubit. Nat. Commun. 9, 3902 (2018).

    Article  ADS  Google Scholar 

  141. DiVincenzo, D. P., Bacon, D., Kempe, J., Burkard, G. & Whaley, K. B. Universal quantum computation with the exchange interaction. Nature 408, 339–442 (2000).

    Article  ADS  Google Scholar 

  142. Medford, J. et al. Quantum-dot-based resonant exchange qubit. Phys. Rev. Lett. 111, 050501 (2013).

    Article  ADS  Google Scholar 

  143. Medford, J. et al. Self-consistent measurement and state tomography of an exchange-only spin qubit. Nat. Nanotechnol. 8, 654–659 (2013).

    Article  ADS  Google Scholar 

  144. Eng, K. et al. Isotopically enhanced triple-quantum-dot qubit. Sci. Adv. 1, 1500214 (2015).

    Article  ADS  Google Scholar 

  145. Russ, M. & Burkard, G. Three-electron spin qubits. J. Phys. Condens. Matter 29, 393001 (2017).

    Article  Google Scholar 

  146. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  147. Goy, P., Raimond, J. M., Gross, M. & Haroche, S. Observation of cavity-enhanced single-atom spontaneous emission. Phys. Rev. Lett. 50, 1903–1906 (1983).

    Article  ADS  Google Scholar 

  148. Heinzen, D. J., Childs, J. J., Thomas, J. E. & Feld, M. S. Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator. Phys. Rev. Lett. 58, 1320–1323 (1987).

    Article  ADS  Google Scholar 

  149. Warren, A., Barnes, E. & Economou, S. Long-distance entangling gates between quantum dot spins mediated by a superconducting resonator. Phys. Rev. B 100, 161303 (2019).

  150. Benito, M., Petta, J. R. & Burkard, G. Optimized cavity-mediated dispersive two-qubit gates between spin qubits. Phys. Rev. B 100, 081412 (2019).

  151. Borjans F., Croot X.G., Mi X., Gullans M. J. & Petta J. R. Resonant microwave-mediated interactions between distant electron spins. Nature 577, 195–198 (2019).

    Article  ADS  Google Scholar 

  152. Zajac, D. M., Hazard, T. M., Mi, X., Nielsen, E. & Petta, J. R. Scalable gate architecture for a one-dimensional array of semiconductor spin qubits. Phys. Rev. Appl. 6, 054013 (2016).

    Article  ADS  Google Scholar 

  153. Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

    Article  ADS  Google Scholar 

  154. Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014).

    Article  ADS  Google Scholar 

  155. Hensgens, T. et al. Quantum simulation of a Fermi–Hubbard model using a semiconductor quantum dot array. Nature 548, 70–73 (2017).

    Article  ADS  Google Scholar 

  156. Lupaşcu, A. et al. Quantum non-demolition measurement of a superconducting two-level system. Nat. Phys. 3, 119–123 (2007).

    Article  Google Scholar 

  157. Besse, J. C. et al. Single-shot quantum nondemolition detection of individual itinerant microwave photons. Phys. Rev. X 8, 021003 (2018).

    Google Scholar 

  158. Zheng, G. et al. Rapid gate-based spin read-out in silicon using an on-chip resonator. Nat. Nanotechnol. 14, 742–746 (2019).

    Article  ADS  Google Scholar 

  159. Chen, Y. et al. Multiplexed dispersive readout of superconducting phase qubits. Appl. Phys. Lett. 101, 182601 (2012).

    Article  ADS  Google Scholar 

  160. Hornibrook, J. M. et al. Frequency multiplexing for readout of spin qubits. Appl. Phys. Lett. 104, 103108 (2014).

    Article  ADS  Google Scholar 

  161. Dartiailh, M. C., Kontos, T., Doucot, B. & Cottet, A. Direct cavity detection of Majorana pairs. Phys. Rev. Lett. 118, 126803 (2017).

    Article  ADS  Google Scholar 

  162. Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003–1007 (2012).

    Article  ADS  Google Scholar 

  163. Albrecht, S. M. et al. Exponential protection of zero modes in Majorana islands. Nature 531, 206–209 (2016).

    Article  ADS  Google Scholar 

  164. Das, A. et al. Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys. 8, 887–895 (2012).

    Article  Google Scholar 

  165. Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014).

    Article  ADS  Google Scholar 

  166. Trif, M. & Simon, P. Braiding of Majorana fermions in a cavity. Phys. Rev. Lett. 122, 236803 (2019).

    Article  ADS  Google Scholar 

  167. Burkard, G. & Petta, J. R. Dispersive readout of valley splittings in cavity-coupled silicon quantum dots. Phys. Rev. B 94, 195305 (2016).

    Article  ADS  Google Scholar 

  168. Mi, X., Péterfalvi, C. G., Burkard, G. & Petta, J. R. High-resolution valley spectroscopy of Si quantum dots. Phys. Rev. Lett. 119, 176803 (2017).

    Article  ADS  Google Scholar 

  169. Shim, Y., Ruskov, R., Hurst, H. & Tahan, C. Induced quantum dot probe for material characterization. Appl. Phys. Lett. 114, 152105 (2019).

    Article  ADS  Google Scholar 

  170. de Graaf, S. E., Danilov, A. V., Adamyan, A. & Kubatkin, S. E. A near-field scanning microwave microscope based on a superconducting resonator for low power measurements. Rev. Sci. Instrum. 84, 023706 (2013).

    Article  ADS  Google Scholar 

  171. Wang, J. I. J. et al. Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures. Nat. Nanotechnol. 14, 120–125 (2019).

    Article  ADS  Google Scholar 

  172. Goldhaber-Gordon, D. et al. Kondo effect in a single-electron transistor. Nature 391, 156–159 (1998).

    Article  ADS  Google Scholar 

  173. Goldhaber-Gordon, D. et al. From the Kondo regime to the mixed-valence regime in a single-electron transistor. Phys. Rev. Lett. 81, 5225–5228 (1998).

    Article  ADS  Google Scholar 

  174. Desjardins, M. M. et al. Observation of the frozen charge of a Kondo resonance. Nature 545, 71–74 (2017).

    Article  ADS  Google Scholar 

  175. Hartke, T. R., Liu, Y. Y., Gullans, M. J. & Petta, J. R. Microwave detection of electron-phonon interactions in a cavity-coupled double quantum dot. Phys. Rev. Lett. 120, 097701 (2018).

    Article  ADS  Google Scholar 

  176. Schneider, B. H., Etaki, S., van der Zant, H. S. J. & Steele, G. A. Coupling carbon nanotube mechanics to a superconducting circuit. Sci. Rep. 2, 599 (2012).

    Article  Google Scholar 

  177. Bockrath, M. et al. Luttinger-liquid behaviour in carbon nanotubes. Nature 397, 598–601 (1999).

    Article  ADS  Google Scholar 

  178. Jompol, Y. et al. Probing spin-charge separation in a Tomonaga-Luttinger liquid. Science 325, 597–601 (2009).

    Article  ADS  Google Scholar 

  179. Laroche, D., Gervais, G., Lilly, M. P. & Reno, J. L. 1D-1D Coulomb drag signature of a Luttinger liquid. Science 343, 631–634 (2014).

    Article  ADS  Google Scholar 

  180. Wu, L. et al. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator. Science 354, 1124–1127 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  181. Sohn, L. L., Kouwenhoven, L. P. & Schön, G. Mesoscopic Electron Transport (Kluwer, 1997).

  182. Meirav, U. & Foxman, E. B. Single-electron phenomena in semiconductors. Semicond. Sci. Technol. 11, 255–284 (1996).

    Article  ADS  Google Scholar 

  183. Meystre, P. & Sargent, M. Elements of Quantum Optics (Springer, 2007).

  184. Collett, M. J. & Gardiner, C. W. Squeezing of intracavity and traveling-wave light fields produced in parametric amplification. Phys. Rev. A 30, 1386–1391 (1984).

    Article  ADS  Google Scholar 

  185. Gardiner, C. W. & Collett, M. J. Input and output in damped quantum systems: quantum stochastic differential equations and the master equation. Phys. Rev. A 31, 3761–3774 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  186. Stehlik, J. et al. Double quantum dot floquet gain medium. Phys. Rev. X 6, 041027 (2016).

    Google Scholar 

Download references

Acknowledgements

Supported by Army Research Office grant W911NF-15-1-0149, DARPA grant no. D18AC0025 and the Gordon and Betty Moore Foundation’s EPiQS Initiative through grant GBMF4535.

Author information

Authors and Affiliations

Authors

Contributions

G.B, X.M. and J.R.P. researched data for the article and discussed the content. All authors contributed to the writing and editing of the manuscript.

Corresponding author

Correspondence to Jason R. Petta.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burkard, G., Gullans, M.J., Mi, X. et al. Superconductor–semiconductor hybrid-circuit quantum electrodynamics. Nat Rev Phys 2, 129–140 (2020). https://doi.org/10.1038/s42254-019-0135-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-019-0135-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing