Skip to main content
Log in

A Na+/H+ antiporter, K2-NhaD, improves salt and drought tolerance in cotton (Gossypium hirsutum L.)

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Key message

Overexpression of K2-NhaD in transgenic cotton resulted in phenotypes with strong salinity and drought tolerance in greenhouse and field experiments, increased expression of stress-related genes, and improved regulation of metabolic pathways, such as the SOS pathway.

Abstract

Drought and salinity are major abiotic stressors which negatively impact cotton yield under field conditions. Here, a plasma membrane Na+/H+ antiporter gene, K2-NhaD, was introduced into upland cotton R15 using an Agrobacterium tumefaciens-mediated transformation system. Homozygous transgenic lines K9, K17, and K22 were identified by PCR and glyphosate-resistance. TAIL-PCR confirmed that T-DNA carrying the K2-NhaD gene in transgenic lines K9, K17 and K22 was inserted into chromosome 3, 19 and 12 of the cotton genome, respectively. Overexpression of K2-NhaD in transgenic cotton plants grown in greenhouse conditions and subjected to drought and salinity stress resulted in significantly higher relative water content, chlorophyll, soluble sugar, proline levels, and SOD, CAT, and POD activity, relative to non-transgenic plants. The expression of stress-related genes was significantly upregulated, and this resulted in improved regulation of metabolic pathways, such as the salt overly sensitive pathway. K2-NhaD transgenic plants growing under field conditions displayed strong salinity and drought tolerance, especially at high levels of soil salinity and drought. Seed cotton yields in transgenic line were significantly higher than in wild-type plants. In conclusion, the data indicate that K2-NhaD transgenic lines have great potential for the production of stress-tolerant cotton under field conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abraham E, Hourton-Cabassa C, Erdei L, Szabados L (2010) Methods for determination of proline in plants. Methods Mol Biol 639:317–331

    CAS  PubMed  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    CAS  PubMed  Google Scholar 

  • Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25(12):1263–1274

    CAS  PubMed  Google Scholar 

  • Barajas-Lopez JD, Moreno JR, Gamez-Arjona FM, Pardo JM, Punkkinen M, Zhu JK, Quintero FJ, Fujii H (2018) Upstream kinases of plant SnRKs are involved in salt stress tolerance. Plant J 93(1):107–118

    CAS  PubMed  Google Scholar 

  • Barragan V, Leidi EO, Andres Z, Rubio L, De Luca A, Fernandez JA, Cubero B, Pardo JM (2012) Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell 24(3):1127–1142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bassil E, Ohto M-a, Esumi T, Tajima H, Zhu Z, Cagnac O, Belmonte M, Peleg Z, Yamaguchi T, Blumwald E (2011a) The Arabidopsis intracellular Na+/H+ Antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development. Plant Cell 23(1):224–239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bassil E, Tajima H, Liang YC, Ohto M, Ushijima K, Nakano R, Esumi T, Coku A, Belmonte M, Blumwald E (2011b) The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. Plant Cell 23(9):3482–3497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brini F, Hanin M, Mezghani I, Berkowitz GA, Masmoudi K (2007) Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants. J Exp Bot 58(2):301–308

    CAS  PubMed  Google Scholar 

  • Chen X, Lu X, Shu N, Wang D, Wang S, Wang J, Guo L, Guo X, Fan W, Lin Z et al (2017) GhSOS1, a plasma membrane Na+/H+ antiporter gene from upland cotton, enhances salt tolerance in transgenic Arabidopsis thaliana. PLoS ONE 12(7):e0181450

    PubMed  PubMed Central  Google Scholar 

  • Cheng C, Zhang Y, Chen XG, Song JL, Guo ZQ, Li KP, Zhang KW (2018) Co-expression of AtNHX1 and TsVP improves the salt tolerance of transgenic cotton and increases seed cotton yield in a saline field. Mol Breed 38:19

    Google Scholar 

  • Chou KC, Shen HB (2008) Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms. Nat Protoc 3(2):153–162

    CAS  PubMed  Google Scholar 

  • Chu XQ, Wang C, Chen XB, Lu WJ, Li H, Wang XL, Hao LL, Guo XQ (2015) The cotton WRKY gene GhWRKY41 positively regulates salt and drought stress tolerance in transgenic Nicotiana benthamiana. PLoS ONE 10(11):e0143022

    PubMed  PubMed Central  Google Scholar 

  • Cuming AC, Cho SH, Kamisugi Y, Graham H, Quatrano RS (2007) Microarray analysis of transcriptional responses to abscisic acid and osmotic, salt, and drought stress in the moss, Physcomitrella patens. New Phytol 176:275–287

    CAS  PubMed  Google Scholar 

  • Gao M, Wang L, Chen SF (2012) Metagenome cloning and functional analysis of Na+/H+ antiporter genes from Keke Salt Lake in China. Curr Microbiol 64(2):179–184

    CAS  PubMed  Google Scholar 

  • Guo WF, Kevin YW, Wang N, Li J, Li GQ, Liu DH (2018) Rapid and convenient transformation of cotton (Gossypium hirsutum L.) using in planta shoot apex via glyphosate selection. J Integr Agr 17(10):2196–2203

    CAS  Google Scholar 

  • Hasanuzzaman M, Oku H, Nahar K, Bhuyan MHMB, Al Mahmud J, Baluska F, Fujita M (2018) Nitric oxide-induced salt stress tolerance in plants: ROS metabolism, signaling, and molecular interactions. Plant Biotechnol Rep 12:77–92

    Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207(4):604–611

    CAS  Google Scholar 

  • Hooks TN, Picchioni GA, Schutte BJ, Shukla MK, Daniel DL (2018) Sodium chloride effects on seed germination, growth, and water use of Lepidium alyssoides, L. draba, and L. latifolium: traits of resistance and implications for invasiveness on saline soils. Rangel Ecol Manag 71(4): 433–442

    Google Scholar 

  • Hraskova M, Papouskova K, Sychrova H, Zimmermannova O (2018) Length of the cytoplasmic C-terminal part of yeast Nha1 Na+/H+ antiporter influences its plasma-membrane targeting in cells lacking Erv14 COPII cargo receptor. Febs Open Bio 8:366–366

    Google Scholar 

  • Huang YJ, Zhao HX, Gao F, Yao PF, Deng RY, Li CL, Chen H, Wu Q (2018) A R2R3-MYB transcription factor gene, FtMYB13, from Tartary buckwheat improves salt/drought tolerance in Arabidopsis. Plant Physiol and Biochem 132(2018):238–248

    CAS  Google Scholar 

  • Ishitani M, Liu JP, Halfter U, Kim CS, Shi WM, Zhu JK (2000) SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell 12(9):1667–1677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jia Q, Zheng C, Sun S, Amjad H, Liang K, Lin W (2018) The role of plant cation/proton antiporter gene family in salt tolerance. Biol Plantarum 62(4):617–629

    CAS  Google Scholar 

  • Josephs TM, Morison IM, Day CL, Wilbanks SM, Ledgerwood EC (2014) Enhancing the peroxidase activity of cytochromec by mutation of residue 41: implications for the peroxidase mechanism and cytochrome c release. Biochem J 458:259–265

    CAS  PubMed  Google Scholar 

  • Kronzucker HJ, Britto DT (2011) Sodium transport in plants: a critical review. New Phytol 189(1):54–81

    CAS  PubMed  Google Scholar 

  • Leidi EO, Barragan V, Rubio L, El-Hamdaoui A, Ruiz MT, Cubero B, Fernandez JA, Bressan RA, Hasegawa PM, Quintero FJ et al (2010) The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato. Plant J 61(3):495–506

    CAS  PubMed  Google Scholar 

  • Li N, Wang X, Ma B, Du C, Zheng L, Wang Y (2017) Expression of a Na(+)/H(+) antiporter RtNHX1 from a recretohalophyte Reaumuria trigyna improved salt tolerance of transgenic Arabidopsis thaliana. J Plant Physiol 218(2017):109–120

    CAS  PubMed  Google Scholar 

  • Li S, Luo W, Jia ZH, Tang SC, Chen C (2018) The effect of natural rainfall on salt leaching under watertable management. Land Degrad Dev 29:1953–1961

    Google Scholar 

  • Lu X, Zhang XF, Duan H, Lian CL, Liu C, Yin WL, Xia XL (2018) Three stress-responsive NAC transcription factors from Populus euphratica differentially regulate salt and drought tolerance in transgenic plants. Physiol Plant 162(1):73–97

    CAS  PubMed  Google Scholar 

  • Maghsoudi K, Emam Y, Niazi A, Pessarakli M, Arvin MJ (2018) P5CS expression level and proline accumulation in the sensitive and tolerant wheat cultivars under control and drought stress conditions in the presence/absence of silicon and salicylic acid. J Plant Interact 13(1):461–471

    CAS  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244(22): 6049–6055

    CAS  PubMed  Google Scholar 

  • McCue KF, Hanson AD (1992) Salt-inducible betaine aldehyde dehydrogenase from sugar beet: cDNA cloning and expression. Plant Mol Biol 18(1):1–11

    CAS  PubMed  Google Scholar 

  • Mishra S, Alavilli H, Lee BH, Panda SK, Sahoo L (2014) Cloning and functional characterization of a vacuolar Na+/H+ antiporter gene from mungbean (VrNHX1) and its ectopic expression enhanced salt tolerance in Arabidopsis thaliana. PLoS ONE 9(10):e106678

    PubMed  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T, Hayakawa T (2002) Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett 532(3):279–282

    CAS  PubMed  Google Scholar 

  • Park DY, Shim Y, Gi E, Lee BD, An G, Kang K, Paek NC (2018) The MYB-related transcription factor RADIALIS-LIKE3 (OsRL3) functions in ABA-induced leaf senescence and salt sensitivity in rice. Environ Exp Bot 156:86–95

    CAS  Google Scholar 

  • Paterson AH, Brubaker CL, Wendel JF (1993) A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep 11(2):122–127

    CAS  Google Scholar 

  • Per TS, Khan NA, Reddy PS, Masood A, Hasanuzzaman M, Khan MIR, Anjum NA (2017) Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: phytohormones, mineral nutrients and transgenics. Plant Physiol Bioch 115(2017):126–140

    CAS  Google Scholar 

  • Ritchie RJ (2006) Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res 89(1):27–41

    CAS  PubMed  Google Scholar 

  • Shen GX, Wei J, Qiu XY, Hu RB, Kuppu S, Auld D, Blumwald E, Gaxiola R, Payton P, Zhang H (2015) Co-overexpression of AVP1 and AtNHX1 in cotton further improves drought and salt tolerance in transgenic cotton plants. Plant Mol Biol Rep 33(2):167–177

    CAS  Google Scholar 

  • Song JL, Zhang R, Yue D, Chen XG, Guo ZQ, Cheng C, Hu MH, Zhang JR, Zhang KW (2018) Co-expression of ApGSMT2g and ApDMT2g in cotton enhances salt tolerance and increases seed cotton yield in saline fields. Plant Sci 274(2018):369–382

    CAS  PubMed  Google Scholar 

  • Verma D, Singla-Pareek SL, Rajagopal D, Reddy MK, Sopory SK (2007) Functional validation of a novel isoform of Na+/H+ antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice. J Biosci Bioeng 32(3):621–628

    CAS  Google Scholar 

  • Wang CL, Lu GQ, Hao YQ, Guo HM, Guo Y, Zhao J, Cheng HM (2017a) ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton. Planta 246(3):453–469

    CAS  PubMed  Google Scholar 

  • Wang N, Qi HK, Qiao WQ, Shi JB, Xu QH, Zhou H, Yan GT, Huang Q (2017b) Cotton (Gossypium hirsutum L.) genotypes with contrasting K+/Na+ ion homeostasis: implications for salinity tolerance. Acta Physiol Plant 39:77

    Google Scholar 

  • Wang LF, Zhu JF, Li XM, Wang SM, Wu J (2018) Salt and drought stress and ABA responses related to bZIP genes from V. radiata and V. angularis. Gene 651(2018): 152–160

    CAS  PubMed  Google Scholar 

  • Wani SH, Tripathi P, Zaid A, Challa GS, Kumar A, Kumar V, Upadhyay J, Joshi R, Bhatt M (2018) Transcriptional regulation of osmotic stress tolerance in wheat (Triticum aestivum L.). Plant Mol Biol 97(6):469–487

    CAS  PubMed  Google Scholar 

  • Wu CA, Yang GD, Meng QW, Zheng CC (2004) The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress. Plant Cell Physiol 45(5):600–607

    CAS  PubMed  Google Scholar 

  • Wu SJ, Wang HH, Li FF, Chen TZ, Zhang J, Jiang YJ, Ding YZ, Guo WZ, Zhang TZ (2008) Enhanced Agrobacterium-mediated transformation of embryogenic calli of upland cotton via efficient selection and timely subculture of somatic embryos. Plant Mol Biol Rep 26(3):174–185

    CAS  Google Scholar 

  • Wu H, Zhu M, Shabala L, Zhou M, Shabala S (2015) K+ retention in leaf mesophyll, an overlooked component of salinity tolerance mechanism: a case study for barley. J Integr Plant Biol 57(2):171–185

    CAS  PubMed  Google Scholar 

  • Yemm EW, Willis AJ (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57(3):508–514

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao F, Wang Z, Zhang Q, Zhao Y, Zhang H (2006) Analysis of the physiological mechanism of salt-tolerant transgenic rice carrying a vacuolar Na+/H+ antiporter gene from Suaeda salsa. J Plant Res 119(2):95–104

    CAS  PubMed  Google Scholar 

  • Zhou SF, Chen XY, Zhang XG, Li YX (2008) Improved salt tolerance in tobacco plants by co-transformation of a betaine synthesis gene BADH and a vacuolar Na+/H+ antiporter gene SeNHX1. Biotechnol Lett 30(2):369–376

    CAS  PubMed  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National GMO New Cultivar Science and Technology grant (2016ZX08005-004) entitled: “GM cotton resistance to drought and salinity.

Author information

Authors and Affiliations

Authors

Contributions

WG performed the experiments, conceived experiments and research plans, analyzed the data, and participated in the writing of the manuscript; GL and NW provided technical assistance to WG; CY, YZ and HP participated in part of experiments; SC and DL supervised the experiments, conceived research plans, and complemented the writing of the manuscript.

Corresponding authors

Correspondence to Dehu Liu or Sanfeng Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1111 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, W., Li, G., Wang, N. et al. A Na+/H+ antiporter, K2-NhaD, improves salt and drought tolerance in cotton (Gossypium hirsutum L.). Plant Mol Biol 102, 553–567 (2020). https://doi.org/10.1007/s11103-020-00969-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-020-00969-1

Keywords

Navigation