Skip to main content
Log in

A targeted genotyping-by-sequencing tool (Rapture) for genomics-assisted breeding in oat

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

We adapted and tested a Rapture assay as an enhancement of genotyping-by-sequencing (GBS) in oat (Avena sativa). This assay was based on an additional bait-based capture of specific DNA fragments representing approximately 10,000 loci within the enzyme-based complexity reduction provided by GBS. By increasing the specificity of GBS to include only those fragments that provided effective polymorphic markers, it was possible to achieve deeper sequence coverage of target markers, while simultaneously sequencing a greater number of samples on a single unit of next-generation sequencing. The Rapture assay consistently out-performed the GBS assay when filtering markers at 80% completeness or greater, even though the total number of reads per sample was only 25% that of GBS. The reduced sequencing cost per sample for Rapture more than compensated for the increased cost of the capture reaction. Thus, Rapture generated a more repeatable set of marker data at a cost per sample that was approximately 40% less than GBS. Additional advantages of Rapture included accurate identification of heterozygotes, and the possibility to increase the depth or length of sequence reads with less impact on the cost per sample. We tested Rapture for genomic selection and diversity analysis and concluded that it is an effective alternative to GBS or other SNP assays. We recommend the use of Rapture in oat and the development of similar assays in other crops with large complex genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali OA, O’Rourke SM, Amish SJ, Meek MH, Luikart G, Jeffres C, Miller MR (2016) RAD capture (Rapture): flexible and efficient sequence-based genotyping. Genetics 202:389–400

    Article  CAS  Google Scholar 

  • Asoro FG, Newell MA, Beavis WD, Scott MP, Tinker NA, Jannink J-L (2013) Genomic, marker-assisted, and pedigree-BLUP selection methods for β-glucan concentration in elite oat. Crop Sci 53:1894–1906

    Article  CAS  Google Scholar 

  • Baloch FS, Alsaleh A, Shahid MQ, Çiftçi V, de Miera LES, Aasim M, Nadeem MA, Aktaş H, Özkan H, Hatipoğlu R (2017) A whole genome DArTseq and SNP analysis for genetic diversity assessment in durum wheat from central fertile crescent. PLoS ONE 12:e0167821

    Article  Google Scholar 

  • Bekele WA, Wight CP, Chao S, Howarth CJ, Tinker NA (2018) Haplotype based genotyping-by-sequencing in oat genome research. Plant Biotechnol J 16:1452–1463

    Article  CAS  Google Scholar 

  • Boudhrioua C, Bastien M, Légaré G, Pomerleau S, St-Cyr J, Boyle B, Belzile F (2017) Genotyping-by-sequencing in potato. In: Kumar Chakrabarti S, Xie C, Kumar Tiwari J (eds) The potato genome. Springer, Cham

    Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  Google Scholar 

  • Chaffin AS, Huang Y-F, Smith S, Bekele WA, Babiker E, Gnanesh BN, Foresman BJ, Blanchard SG, Jay JJ, Reid RW, Wight CP, Chao S, Oliver R, Islamovic E, Kolb FL, McCartney C, Mitchell Fetch JW, Beattie AD, Bjørnstad Å, Bonman JM, Langdon T, Howarth CJ, Brouwer CR, Jellen EN, Esvelt Klos K, Poland JA, Hseih T-F, Brown R, Jackson E, Schlueter JA, Tinker NA (2016) A consensus map in cultivated hexaploid oat reveals conserved grass synteny with substantial sub-genome rearrangement. Plant Genome. https://doi.org/10.3835/plantgenome2015.10.0102

    Article  PubMed  Google Scholar 

  • Dorant Y, Benestan L, Normandeau E, Boyle B, Rochette R, Bernatchez L (2019) Comparing Pool-seq, Rapture and GBS genotyping for inferring population structure; the American lobster (Homarus americanus) as a case study. Ecol Evolut 9(11):6606–6623

    Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379

    Article  CAS  Google Scholar 

  • Endelman JB (2011) Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 4:250–255

    Article  Google Scholar 

  • Esvelt Klos K, Huang Y-F, Bekele WA, Obert DE, Babiker E, Beattie AD, Bjørnstad Å, Bonman JM, Carson ML, Chao S, Gnanesh BN, Griffiths I, Harrison SA, Howarth CJ, Hu G, Ibrahim A, Islamovic E, Jackson E, Jannink JL, Kolb FL, McMullen MS, Mitchell Fetch JW, Murphy JP, Ohm HW, Rines HW, Rossnagel BG, Schlueter JA, Sorrells ME, Wight CP, Yan W, Tinker NA (2016) Population genomics related to adaptation in elite oat germplasm. Plant Genome 9:2

    Article  Google Scholar 

  • Guo Z, Wang H, Tao J, Ren Y, Xu C, Wu K, Zou C, Zhang J, Xu Y (2019) Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize. Mol Breed 39:37

    Article  Google Scholar 

  • Heffner EL, Jannink J-L, Sorrells ME (2011) Genomic selection accuracy using multifamily prediction models in a wheat breeding program. Plant Genome 4:65–75

    Article  Google Scholar 

  • Hickey JM, Dreisigacker S, Crossa J, Hearne S, Babu R, Prasanna BM, Grondona M, Zambelli A, Windhausen VS, Mathews K (2014) Evaluation of genomic selection training population designs and genotyping strategies in plant breeding programs using simulation. Crop Sci 54:1476–1488

    Article  Google Scholar 

  • Huang YF, Poland JA, Wight CP, Jackson EW, Tinker NA (2014) Using genotyping-by-sequencing (GBS) for genomic discovery in cultivated oat. PLoS ONE 9:e102448

    Article  Google Scholar 

  • Lorenz AJ, Smith KP, Jannink J-L (2012) Potential and optimization of genomic selection for fusarium head blight resistance in six-row barley. Crop Sci 52:1609–1621

    Article  Google Scholar 

  • Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD, Buckler ES, Costich DE (2013) Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet 9:e1003215

    Article  CAS  Google Scholar 

  • Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17:240–248

    Article  CAS  Google Scholar 

  • Money D, Gardner K, Migicovsky Z, Schwaninger H, Zhong G-Y, Myles S (2015) LinkImpute: fast and accurate genotype imputation for nonmodel organisms. G3 Genes Genomes Genet 5:2383–2390

    Google Scholar 

  • Norman A, Taylor J, Edwards J, Kuchel H (2018) Optimising genomic selection in wheat: effect of marker density, population size and population structure on prediction accuracy. G3 Genes Genomes Genet 8:2889–2899

    Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006) DARwin software http://darwin.cirad.fr/darwin. Accessed 2 Dec 2019

  • Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e32253

    Article  CAS  Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. https://www.r-project.org/about.html. Accessed 2 Dec 2019

  • Sunstrum FG, Bekele WA, Wight CP, Yan W, Chen Y, Tinker NA (2019) A genetic linkage map in southern-by-spring oat identifies multiple QTLs for adaptation and rust resistance. Plant Breed 138:82–94

    CAS  Google Scholar 

  • Tinker NA, Chao S, Lazo GR, Oliver RE, Huang Y-F, Poland JA, Jellen EN, Maughan PJ, Kilian A, Jackson EW (2014) A SNP genotyping array for hexaploid oat. Plant Genome. https://doi.org/10.3835/plantgenome2014.03.0010

    Article  Google Scholar 

  • Tinker NA, Bekele WA, Hattori J (2016) Haplotag: software for haplotype-based genotyping-by-sequencing analysis. G3 Genes Genomes Genet 6:857–863

    CAS  Google Scholar 

  • Truong HT, Ramos AM, Yalcin F, de Ruiter M, van der Poel HJ, Huvenaars KH, Hogers RC, van Enckevort LJ, Janssen A, van Orsouw NJ (2012) Sequence-based genotyping for marker discovery and co-dominant scoring in germplasm and populations. PLoS ONE 7:e37565

    Article  CAS  Google Scholar 

  • Yan H, Bekele WA, Wight CP, Peng Y, Langdon T, Latta RG, Fu Y-B, Diederichsen A, Howarth CJ, Jellen EN, Boyle B, Wei Y, Tinker NA (2016) High-density marker profiling confirms ancestral genomes of Avena species and identifies d-genome chromosomes of hexaploid oat. Theor Appl Genet 129:2133–2149

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge professional assistance from Matthew Hayes, Brad De Haan, Denis Green, Kali Stewart, Julie Chapados, Kasia Dadej, and Wayne McCormick, as well as useful discussions and input from Charlene Wight, Alireza Nakhforoosh, and Shiaoman Chao. This work was funded as part of the ‘Oat Project’ through the Agriculture and Agri-Food Canada AgriScience Program, with matching industry support from the Canadian Field Crop Research Alliance (CFCRA).

Author information

Authors and Affiliations

Authors

Contributions

WAB, AI and NAT performed data analysis and wrote the manuscript; BB suggested the Rapture technique and advised on its development; AI and BB performed laboratory analyses; WY and JMF provided biological materials and advised on data interpretation. All authors edited and approved the final manuscript.

Corresponding author

Correspondence to Nicholas A. Tinker.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by Hong-Qing Ling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Design and full sequence data for the myBaits capture probes (XLSX 856 kb)

122_2019_3496_MOESM2_ESM.xlsx

Key for de-multiplexing raw sequence files (available at http://www.ncbi.nlm.nih.gov/bioproject/590643) (XLSX 80 kb)

122_2019_3496_MOESM3_ESM.xlsx

Example of a Haplotag GBS passport showing tag-level haplotypes and tag counts for GBS versus Rapture assays performed on the same set of accessions (XLSX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bekele, W.A., Itaya, A., Boyle, B. et al. A targeted genotyping-by-sequencing tool (Rapture) for genomics-assisted breeding in oat. Theor Appl Genet 133, 653–664 (2020). https://doi.org/10.1007/s00122-019-03496-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-019-03496-w

Navigation