Skip to main content
Log in

Differential functional traits underlying the contrasting salt tolerance in Lepidium species

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

To explore the mechanisms responsible for salt tolerance in Brassicaceae species, a multifactorial approach was used to clarify the functional traits underlying the differential salt tolerance in two Lepidium species, namely the halophyte L. latifolium and its glycophyte relative, L. sativum.

Methods

Parameters related to photosynthesis, nitrogen assimilation, ion accumulation, water relations and succulence, osmotic adjustment, phenolics metabolism, antioxidative defense, nitric oxide (NO) level and the expression of Na+ antiporter (SOS1 and NHX) were analyzed in plants grown under salt stress in hydroponics.

Results

In addition to significant differences regarding the majority of salt tolerance indicators, a characteristic early boost, 52 h after exposure to salt, was observed in the concentration of H2O2 and NO in the halophyte, which was almost absent in the glycophyte. Following the application of detrended component analysis, discrimination between the glycophyte and halophyte could only be performed via temporal curves in the antioxdative components and NO, and less effectively, by phenolics metabolism.

Conclusion

H2O2 and NO signaling and the adaptive modification of phenolics metabolism play crucial roles in determining the halophytic behavior of L. latifolium. These data may result in new insights concerning the studies on halophytism in the Brassicaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

MDA:

malondialdehyde

NR:

nitrate reductase

NO:

nitric oxide

POD:

peroxidase

PAL:

phenylalanine ammonia lyase

PPO:

polyphenol oxidase

ROS:

reactive oxygen species

SOD:

superoxide dismutase

References

  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7:18

    Google Scholar 

  • Akhani H (2006) Biodiversity of halophytic and sabkha ecosystems in Iran. In: Khan MA, Böer B, Kust GS, Barth H-J (eds) Sabkha ecosystems. Springer, Dordrecht, pp 71–88

    Google Scholar 

  • Alemán F, Nieves-Cordones M, Martínez V, Rubio F (2009) Potassium/sodium steady-state homeostasis in Thellungiella halophila and Arabidopsis thaliana under long-term salinity conditions. Plant Sci 176:768–774

    Google Scholar 

  • Ali A, Cheol Park H, Aman R, Ali Z, Yun DJ (2013) Role of HKT1 in Thellungiella salsuginea, a model extremophile plant. Plant Signal Behav 8:e25196

    PubMed  PubMed Central  Google Scholar 

  • Amor NB, Jiménez A, Megdiche W, Lundqvist M, Sevilla F, Abdelly C (2007) Kinetics of the anti-oxidant response to salinity in the halophyte Cakile maritima. J Integr Plant Biol 49:982–992

    Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    PubMed  CAS  Google Scholar 

  • Arora D, Jain P, Singh N, Kaur H, Bhatla SC (2016) Mechanisms of nitric oxide crosstalk with reactive oxygen species scavenging enzymes during abiotic stress tolerance in plants. Free Radic Res 50:291–303

    PubMed  CAS  Google Scholar 

  • Boestfleisch C, Wagenseil NB, Buhman AK, Seal CE, Wade EM, Muscolo A, Papenbrock J (2014) Manipulating the antioxidant capacity of halophytes to increase their cultural and economic value through saline cultivation. AoB Plants 6:plu046

    PubMed  PubMed Central  Google Scholar 

  • Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65:1241–1257

    PubMed  CAS  Google Scholar 

  • Boudet AM (2007) Evolution and current status of research in phenolic compounds. Phytochemistry 68:2722–2735

    PubMed  CAS  Google Scholar 

  • Cai W, Liu W, Wang WS, Fu ZW, Han TT, Lu YT (2015) Overexpression of rat neurons nitric oxide synthase in rice enhances drought and salt tolerance. PLoS One 10:e0131599

    PubMed  PubMed Central  Google Scholar 

  • Cai-Hong P, Su-Jun Z, Zhi-Zhong G, Bao-Shan W (2005) NaCl treatment markedly enhances H2O2-scavenging system in leaves of halophyte Suaeda salsa. Physiol Plant 125:490–499

    Google Scholar 

  • Casado-Vela J, Sellés S, Bru R (2005) Purification and kinetic characterization of polyphenol oxidase from tomato fruits (Lycopersicon esculentum cv. Muchamiel). J Food Biochem 29:381–401

    CAS  Google Scholar 

  • Chen X, Truksa M, Shah S, Weselake RJ (2010) A survey of quantitative real-time polymerase chain reaction internal reference genes for expression studies in Brassica napus. Anal Biochem 405:138–140

    PubMed  CAS  Google Scholar 

  • Chen J, Xiong DY, Wang WH, Hu WJ, Simon M, Xiao Q, Liu TW, Liu X, Zheng HL (2013) Nitric oxide mediates root K+/Na+ balance in a mangrove plant, Kandelia obovata, by enhancing the expression of AKT1-type K+ channel and Na+/H+ antiporter under high salinity. PLoS One 8:e71543

    PubMed  CAS  PubMed Central  Google Scholar 

  • Conn SJ, Hocking B, Dayod M, Xu B, Athman A, Henderson S, Aukett L, Conn V, Shearer MK, Fuentes S, Tyerman SD (2013) Protocol: optimising hydroponic growth systems for nutritional and physiological analysis of Arabidopsis thaliana and other plants. Plant Methods 9:4

    PubMed  CAS  PubMed Central  Google Scholar 

  • Daudi A, O’Brien JA (2012) Detection of hydrogen peroxide by DAB staining in Arabidopsis leaves. Bio Protoc 2:e263

    PubMed  Google Scholar 

  • De Vos AC, Broekman R, de Almeida Guerra CC, van Rijsselberghe M, Rozema J (2013) Developing and testing new halophyte crops: a case study of salt tolerance of two species of the Brassicaceae, Diplotaxis tenuifolia and Cochlearia officinalis. Environ Exp Bot 92:154–164

    Google Scholar 

  • Debez A, Hamed KB, Grignon C, Abdelly C (2004) Salinity effects on germination, growth, and seed production of the halophyte Cakile maritima. Plant Soil 262:179–189

    CAS  Google Scholar 

  • Dickerson DP, Pascholati SF, Hagerman AE, Butler LG, Nicholson RL (1984) Phenylalanine ammonia-lyase and hydroxycinnamate: CoA ligase in maize mesocotyls inoculated with Helminthosporium maydis or Helminthosporium carbonum. Physiol Plant Pathol 25:111–123

    CAS  Google Scholar 

  • Ellouzi H, Ben Hamed K, Cela J, Munné-Bosch S, Abdelly C (2011) Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Physiol Plant 142:128–143

    PubMed  CAS  Google Scholar 

  • Ellouzi H, Hamed KB, Hernández I, Cela J, Müller M, Magné C, Abdelly C, Munné-Bosch S (2014) A comparative study of the early osmotic, ionic, redox and hormonal signaling response in leaves and roots of two halophytes and a glycophyte to salinity. Planta 240:1299–1317

    PubMed  CAS  Google Scholar 

  • Fancy NN, Bahlmann AK, Loake GJ (2017) Nitric oxide function in plant abiotic stress. Plant Cell Environ 40:462–472

    PubMed  CAS  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    PubMed  CAS  Google Scholar 

  • Gong Q, Li P, Ma S, Indu Rupassara S, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826–839

    PubMed  CAS  Google Scholar 

  • Guo Y, Jia W, Song J, Wang D, Chen M, Wang B (2012) Thellungilla halophila is more adaptive to salinity than Arabidopsis thaliana at stages of seed germination and seedling establishment. Acta Physiol Plant 34:1287–1294

    CAS  Google Scholar 

  • Hajiboland R, Bahrami-Rad S, Akhani H, Poschenrieder C (2018) Salt tolerance mechanisms in three Irano-Turanian Brassicaceae halophytes relatives of Arabidopsis thaliana. J Plant Res 131:1029–1046

    PubMed  CAS  Google Scholar 

  • Hancock JT, Neill SJ (2019) Nitric oxide: its generation and interactions with other reactive signaling compounds. Plants 8:41

    CAS  PubMed Central  Google Scholar 

  • Hatier J-HB, Gould KS (2009) Anthocyanins function in vegetative organs. In: Gould K, Davies KM, Winefield C (eds) Anthocyanins: biosynthesis, functions, and applications. Springer, New York, pp 1–19

    Google Scholar 

  • Haworth M, Killi D, Materassi A, Raschi A (2015) Coordination of stomatal physiological behavior and morphology with carbon dioxide determines stomatal control. Am J Bot 102:677–688

    PubMed  CAS  Google Scholar 

  • Haworth M, Centritto M, Giovannelli A, Marino G, Proietti N, Capitani D, De Carlo A, Loreto F (2017) Xylem morphology determines the drought response of two Arundo donax ecotypes from contrasting habitats. GCB Bioenergy 9:119–131

    CAS  Google Scholar 

  • Hedge IC (1965) Lepidium L. In: Davis PH (ed) Flora of Turkey and the East Aegean Islands. Edinburgh University Press, Edinburgh, pp 279–285

  • Huang CH, Sun RR, Hu Y, Zeng LP, Zhang N, Cai LM, Zhang Q, Koch MA, Al-Shehbaz I, Edger PP, Pires JC, Tan DY, Zhong Y, Ma H (2016) Resolution of Brassicaceae phylogeny using nuclear genes uncovers nested radiations and supports convergent morphological evolution. Mol Biol Evol 33:394–412

    PubMed  CAS  Google Scholar 

  • Inan G, Zhang Q, Li P, Wang Z, Cao Z, Zhang H, Zhang C, Quist TM, Goodwin SM, Zhu J, Shi H (2004) Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol 135:1718–1737

    PubMed  CAS  PubMed Central  Google Scholar 

  • Japelaghi RH, Haddad R, Garoosi GA (2011) Rapid and efficient isolation of high quality nucleic acids from plant tissues rich in polyphenols and polysaccharides. Mol Biotechnol 49:129–137

    PubMed  CAS  Google Scholar 

  • Ji H, Pardo JM, Batelli G, Van Oosten MJ, Bressan RA, Li X (2013) The salt overly sensitive (SOS) pathway: established and emerging roles. Mol Plant 6:275–286

    PubMed  CAS  Google Scholar 

  • Jiang X, Leidi EO, Pardo JM (2010) How do vacuolar NHX exchangers function in plant salt tolerance? Plant Signal Behav 5:792–795

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kant S, Kant P, Raveh E, Barak S (2006) Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila. Plant Cell Environ 29:1220–1234

    PubMed  CAS  Google Scholar 

  • Kawano T (2003) Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep 21:829–837

    PubMed  CAS  Google Scholar 

  • Ksouri R, Megdiche W, Debez A, Falleh H, Grignon C, Abdelly C (2007) Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiol Biochem 45:244–249

    PubMed  CAS  Google Scholar 

  • Le Gall H, Philippe F, Domon JM, Gillet F, Pelloux J, Rayon C (2015) Cell wall metabolism in response to abiotic stress. Plants 4:112–166

    PubMed  PubMed Central  Google Scholar 

  • Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge university Press

  • Li ZQ, Li JX, Li HJ, Shi ZH, Zhang GF (2015) Overexpression of TsApx1 from Thellungiella salsuginea improves abiotic stress tolerance in transgenic Arabidopsis thaliana. Biol Plant 59:497–506

    CAS  Google Scholar 

  • Liu P, Yang GD, Li H, Zheng CC, Wu CA (2010) Overexpression of NHX1s in transgenic Arabidopsis enhances photoprotection capacity in high salinity and drought conditions. Acta Physiol Plant 32:81–90

    CAS  Google Scholar 

  • Liu Q, Luo L, Zheng L (2018) Lignins: biosynthesis and biological functions in plants. Int J Mol Sci 19:335

    PubMed Central  Google Scholar 

  • Lugan R, Niogret MF, Leport L, Guégan JP, Larher FR, Savouré A, Kopka J, Bouchereau A (2010) Metabolome and water homeostasis analysis of Thellungiella salsuginea suggests that dehydration tolerance is a key response to osmotic stress in this halophyte. Plant J 64:215–229

    PubMed  CAS  Google Scholar 

  • M’rah S, Ouerghi Z, Berthomieu C, Havaux M, Jungas C, Hajji M, Grignon C, Lachaâl M (2006) Effects of NaCl on the growth, ion accumulation and photosynthetic parameters of Thellungiella halophila. J Plant Physiol 163:1022–1031

    PubMed  Google Scholar 

  • Manaa A, Mimouni H, Terras A, Chebil F, Wasti S, Gharbi E, Ben Ahmed H (2014) Superoxide dismutase isozyme activity and antioxidant responses of hydroponically cultured Lepidium sativum L. to NaCl stress. J Plant Interact 9:440–449

    CAS  Google Scholar 

  • Matsui K, Tanaka H, Ohme-Takagi M (2004) Suppression of the biosynthesis of proanthocyanidin in Arabidopsis by a chimeric PAP1 repressor. Plant Biotechnol J 2:487–493

    PubMed  CAS  Google Scholar 

  • Mittal S, Kumari N, Sharma V (2012) Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiol Biochem 54:17–26

    PubMed  CAS  Google Scholar 

  • Morrison IM (1972) A semi-micro method for the determination of lignin and its use in predicting the digestibility of forage crops. J Sci Food Agric 23:455–463

    PubMed  CAS  Google Scholar 

  • Moura JC, Bonine CA, De Oliveira Fernandes Viana J, Dornelas MC, Mazzafera P (2010) Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52:360–376

    PubMed  CAS  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    PubMed  CAS  Google Scholar 

  • Nawaz I, Iqbal M, Hakvoort HW, Bliek M, de Boer B, Schat H (2014) Expression levels and promoter activities of candidate salt tolerance genes in halophytic and glycophytic Brassicaceae. Environ Exp Bot 99:59–66

    CAS  Google Scholar 

  • Ogburn RM, Edwards EJ (2012) Quantifying succulence: a rapid, physiologically meaningful metric of plant water storage. Plant Cell Environ 35:1533–1542

    PubMed  Google Scholar 

  • Oh DH, Leidi E, Zhang Q, Hwang SM, Li Y, Quintero FJ, Jiang X, D'Urzo MP, Lee SY, Zhao Y, Bahk JD (2009) Loss of halophytism by interference with SOS1 expression. Plant Physiol 151:210–222

    PubMed  CAS  PubMed Central  Google Scholar 

  • Orsini F, D'urzo MP, Inan G, Serra S, Oh DH, Mickelbart MV, Consiglio F, Li X, Jeong JC, Yun DJ, Bohnert HJ (2010) A comparative study of salt tolerance parameters in 11 wild relatives of Arabidopsis thaliana. J Exp Bot 61:3787–3798

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ozgur R, Uzilday B, Sekmen AH, Turkan I (2013) Reactive oxygen species regulation and antioxidant defence in halophytes. Funct Plant Biol 40:832–847

    CAS  PubMed  Google Scholar 

  • Rodríguez-Rosales MP, Gálvez FJ, Huertas R, Aranda MN, Baghour M, Cagnac O, Venema K (2009) Plant NHX cation/proton antiporters. Plant Signal Behav 4:265–276

    PubMed  PubMed Central  Google Scholar 

  • Sami F, Faizan M, Faraz A, Siddiqui H, Yusuf M, Hayat S (2018) Nitric oxide-mediated integrative alterations in plant metabolism to confer abiotic stress tolerance, NO crosstalk with phytohormones and NO-mediated post translational modifications in modulating diverse plant stress. Nitric Oxide 73:22–38

    PubMed  CAS  Google Scholar 

  • Sánchez-Aguayo I, Rodríguez-Galán JM, García R, Torreblanca J, Pardo JM (2004) Salt stress enhances xylem development and expression of S-adenosyl-L-methionine synthase in lignifying tissues of tomato plants. Planta 220:278–285

    PubMed  Google Scholar 

  • Shabala S (2013) Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot 112:1209–1221

    PubMed  PubMed Central  Google Scholar 

  • Shabala S, Mackay A (2011) Ion transport in halophytes. In: Turkan I (ed) Plant responses to drought and salinity stress, developments in a post-genomic era. Elsevier, USA, pp 151–199

    Google Scholar 

  • Shafi A, Chauhan R, Gill T, Swarnkar MK, Sreenivasulu Y, Kumar S, Kumar N, Shankar R, Ahuja PS, Singh AK (2015) Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in Arabidopsis under salt stress. Plant Mol Biol 87:615–631

    PubMed  CAS  Google Scholar 

  • Subbarao GV, Ito O, Berry WL, Wheeler RM (2003) Sodium—a functional plant nutrient. Crit Rev Plant Sci 22:391–416

    Google Scholar 

  • Sui N, Han G (2014) Salt-induced photoinhibition of PSII is alleviated in halophyte Thellungiella halophila by increases of unsaturated fatty acids in membrane lipids. Acta Physiol Plant 36:983–992

    CAS  Google Scholar 

  • Sun J, Zhang X, Broderick M, Fein H (2003) Measurement of nitric oxide production in biological systems by using Griess reaction assay. Sensors 3:276–284

  • Swain T, Hillis WE (1959) The phenolic constituents of Prunus domestica I The quantitative analysis of phenolic constituents. J Sci Food Agric 10:63–68

    CAS  Google Scholar 

  • Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    PubMed  CAS  Google Scholar 

  • Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135:1697–1709

    PubMed  CAS  PubMed Central  Google Scholar 

  • Waszczak C, Carmody M, Kangasjärvi J (2018) Reactive oxygen species in plant signaling. Annu Rev Plant Biol 69:209–236

    PubMed  CAS  Google Scholar 

  • Wiciarz M, Gubernator B, Kruk J, Niewiadomska E (2015) Enhanced chloroplastic generation of H2O2 in stress-resistant Thellungiella salsuginea in comparison to Arabidopsis thaliana. Physiol Plant 153:467–476

    PubMed  CAS  Google Scholar 

  • Wu C, Gao X, Kong X, Zhao Y, Zhang H (2009) Molecular cloning and functional analysis of a Na+/H+ antiporter gene ThNHX1 from a halophytic plant Thellungiella halophila. Plant Mol Biol Rep 27:1

    CAS  Google Scholar 

  • Yang L, Wen KS, Ruan X, Zhao YX, Wei F, Wang Q (2018) Response of plant secondary metabolites to environmental factors. Molecules 23:762

    PubMed Central  Google Scholar 

  • Zhao L, Zhang F, Guo J, Yang Y, Li B, Zhang L (2004) Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiol 134:849–857

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhao MG, Tian QY, Zhang WH (2007) Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiol 144:206–217

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Center for International Scientific Studies & Collaboration (CISSC), Iran. C. Poschenrieder thanks support from project SAL-CAL-MED from Spanish MICINN BFU2016-75176-R. S. Bahrami-Rad was supported by a postdoctoral fellowship provided by the Research Deputy Office, University of Tabriz, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Hajiboland.

Additional information

Responsible Editor: Wieland Fricke.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 945 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajiboland, R., Bahrami-Rad, S., Zeinalzade, N. et al. Differential functional traits underlying the contrasting salt tolerance in Lepidium species. Plant Soil 448, 315–334 (2020). https://doi.org/10.1007/s11104-020-04436-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-020-04436-0

Keywords

Navigation