Skip to main content
Log in

Boosting of Soot Combustion on Alkaline Mn/ZrO2 Nanostructures

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

An important decrease in the soot combustion temperature was observed by employing potassium and manganese on ZrO2 as support; significantly boosted soot combustion was obtained with the K/ZrO2 and Mn–K/ZrO2 catalysts for T50 at 295 and 240 °C, respectively. The enhanced catalytic activity by using the Mn–K/ZrO2 catalyst could be attributed to the alkaline metal ion, which improved the catalyst/soot contact. XPS results revealed the presence of surface vacancies, where the addition of manganese improved the lattice oxygen and concentration of OH groups on the Mn–K/ZrO2 catalyst at low temperatures; the presence of surface vacancies was facilitated by the interaction between potassium and manganese. The Mn–K/ZrO2 catalyst showed resistance to deactivation for five cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dockery DW, Schwartz J, Spengler JD (1992) Air pollution and daily mortality: associations with particulates and acid aerosols. Environ Res 59:362–373

    Article  CAS  Google Scholar 

  2. Neeft JPA, Makkee M, Moulijn JA (1996) Catalysts for the oxidation of soot from diesel exhaust gases. I. An exploratory study. Appl Catal B 8:57–78

    Article  CAS  Google Scholar 

  3. Neri G, Bonaccorsi L, Donato A, Milone C, Musolino MG, Visco AM (1997) Catalytic combustion of diesel soot over metal oxide catalysts. Appl Catal B 11:217–231

    Article  CAS  Google Scholar 

  4. Fiebig M, Wiartalla A, Holderbaum B, Kiesow S (2014) Particulate emissions from diesel engines: correlation between engine technology and emissions. J Occup Med Toxicol 9:6

    Article  Google Scholar 

  5. Li J, He H, Hu C, Zhao J (2013) Chemical poison and regeneration of SCR catalysts for NOx removal from stationary sources. Front Environ Sci Eng 7(3):302–325

    Article  CAS  Google Scholar 

  6. Ciambelli P, Corbo P, Parella P, Scialo M, Vaccaro S (1990) Catalytic oxidation of soot from diesel exhaust gases: 1. Screening of metal oxide catalysts by TG-DTG-DTA analysis. Thermochim Acta 162:83–89

    Article  CAS  Google Scholar 

  7. Querini CA, Ulla MA, Requejo F, Soria J, Sedran UA, Miro EE (1998) Catalytic combustion of diesel soot particles. Activity and characterization of Co/MgO and Co K/MgO catalysts. Appl Catal B 15:5–19

    Article  CAS  Google Scholar 

  8. van Doorn J, Varloud J, Meriaudeau P, Perrichon V, Chevrier M, Gauthier C (1992) Effect of support material on the catalytic combustion of diesel soot particulates. Appl Catal B 1:117–127

    Article  Google Scholar 

  9. Wang LC, Liu Q, Huang XS, Liu YM, Cao Y, Fan KN (2009) Gold nanoparticles supported on manganese oxides for low-temperature CO oxidation. Appl Catal B 88:204–212

    Article  CAS  Google Scholar 

  10. Wang J, Yang G, Cheng L, Shin EW, Men Y (2015) Three-dimensionally ordered macroporous spinel-type MCr2O4 (M=Co, Ni, Zn, Mn) catalysts with highly enhanced catalytic performance for soot combustion. Catal Sci Technol 5:4594–4601

    Article  CAS  Google Scholar 

  11. Sudarsanam P, Hillary B, Amin MH, Hamid SBA, Bhargava SK (2016) Structure-activity relationships of nanoscale MnOx/CeO2 heterostructured catalysts for selective oxidation of amines under eco-friendly conditions. Appl Catal B 185:213–224

    Article  CAS  Google Scholar 

  12. Ji F, Men Y, Wang J, Sun Y, Wang Z, Zhao B, Tao X, Xu G (2019) Promoting diesel soot combustion efficiency by tailoring the shapes and crystal facets of nanoscale Mn3O4. Appl Catal B 242:227–237

    Article  CAS  Google Scholar 

  13. Legutko P, Jakubek T, Kaspera W, Stelmachowski P, Sojka Z, Kotarba A (2014) Soot oxidation over K-doped manganese and iron spinels: How potassium precursor nature and doping level change the catalyst activity. Catal Commun 43:34–37

    Article  CAS  Google Scholar 

  14. Carrascull A, Grzona C, Lick D, Ponzi M, Ponzi E (2002) SOOT combustion. Co and K catalysts supported on different supports. React Kinet Catal Lett 75:63–68

    Article  CAS  Google Scholar 

  15. Yuan S, Meriaudeau P, Perrichon V (1994) Catalytic combustion of diesel soot particles on copper catalysts supported on TiO2. Effect of potassium promoter on the activity. Appl Catal B 3:319–333

    Article  CAS  Google Scholar 

  16. Yu DQ, Liu Y, Wu ZB (2010) Low-temperature catalytic oxidation of toluene over mesoporous MnOx–CeO2/TiO2 prepared by sol–gel method. Catal Commun 11:788–791

    Article  CAS  Google Scholar 

  17. Sun YF, Li JH, Zhang YQ, Hua B, Luo JL (2016) Bifunctional catalyst of core-shell nanoparticles socketed on oxygen-deficient layered perovskite for soot combustion. In situ observation of synergistic dual active sites. ACS Catal 6:2710–2714

    Article  CAS  Google Scholar 

  18. Lee C, Jeon Y, Hata S, Park JI, Akiyoshi R, Saito H, Teraoka Y, Shul YG, Einaga H (2016) Three-dimensional arrangements of perovskite-type oxide nano-fiber webs for effective soot oxidation. Appl Catal B 191:157–164

    Article  CAS  Google Scholar 

  19. Camposeco R, Castillo S, Hinojosa M, Nava N, Zanella R (2020) Manganese promoted TiO2 and ZrO2 nanostructures for soot combustion with boosted efficiency. Surf Coat Technol 384:125305

    Article  CAS  Google Scholar 

  20. Aneggi E, Wiater D, Leitenburg C, Llorca J, Trovarelli A (2014) Shape-dependent activity of ceria in soot combustion. ACS Catal 4:172–181

    Article  CAS  Google Scholar 

  21. Cheng L, Men Y, Wang J, Wang H, An W, Wang Y, Duan Z, Liu J (2017) Crystal facet-dependent reactivity of α-Mn2O3 microcrystalline catalyst for soot combustion. Appl Catal B 204:374–384

    Article  CAS  Google Scholar 

  22. Zhai G, Wang J, Chen Z, An W, Men Y (2018) Boosting soot combustion efficiency of Co3O4 nanocrystals via tailoring crystal facets. Chem Eng J 337:488–498

    Article  CAS  Google Scholar 

  23. Megarajan SK, Rayalu S, Nishibori M, Teraoka Y, Labhsetwar N (2015) Effects of surface and bulk silver on PrMnO3+δ perovskite for CO and soot oxidation: experimental evidence for the chemical state of silver. ACS Catal 5:301–309

    Article  CAS  Google Scholar 

  24. Andana T, Piumetti M, Bensaid S, Veyre L, Thieuleux C, Russo N, Fino D, Quadrelli EA, Pirone R (2017) Ceria-supported small Pt and Pt3Sn nanoparticles for NOx-assisted soot oxidation. Appl Catal B 209:295–310

    Article  CAS  Google Scholar 

  25. Venkataswamy P, Rao KN, Jampaiah D (2015) Nanostructured manganese doped ceria solid solutions for CO oxidation at lower temperatures. Appl Catal B 162:122–132

    Article  CAS  Google Scholar 

  26. Venkataswamy P, Jampaiah D, Lin F, Alxneit I, Reddy BM (2015) Structural properties of alumina supported Ce–Mn solid solutions and their markedly enhanced catalytic activity for CO oxidation. Appl Surf Sci 349:299–309

    Article  CAS  Google Scholar 

  27. Jimenez R, Garcia X, Cellier C, Ruiz P, Gordon AL (2006) Soot combustion with K/MgO as catalyst. Appl Catal A 297:125–134

    Article  CAS  Google Scholar 

  28. Jiménez R, García X, Cellier C, Ruiz P, Gordon AL (2006) Soot combustion with K/MgO as catalyst II. Effect of K-precursor. Appl Catal A 314:81–88

    Article  Google Scholar 

  29. Sing KSW, Everett DH, Haul RAW, Moscou L, Pieroti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  30. Shim SH, LaBounty D, Duffy TS (2011) Raman spectra of bixbyite, Mn2O3, up to 40 GPa. Phys Chem Miner 38:685–691

    Article  CAS  Google Scholar 

  31. Kar P, Sardar S, Ghosh S, Parida MR, Liu B, Mohammed OF, Lemmens P, Pal SK (2015) Nano surface engineering of Mn2O3 for potential light-harvesting application. J Mater Chem C3:8200–8211

    Google Scholar 

  32. Andana T, Piumetti M, Bensaid S, Russo N, Fino D, Pirone R (2016) Nanostructured ceria-praseodymia catalysts for diesel soot combustion. Appl Catal B 197:125–137

    Article  CAS  Google Scholar 

  33. Carrascull AL, Ponzi MI, Ponzi EN (2003) Catalytic Combustion of Soot on KNO3/ZrO2 Catalysts. Effect of Potassium Nitrate Loading on Activity. Ind Eng Chem Res 42(4):692–697

    Article  CAS  Google Scholar 

  34. Milt VG, Banús ED, Ulla MA, Miró EE (2008) Soot combustion and NOx adsorption on Co, Ba, K/ZrO2. Catal Today 133–135:435–440

    Article  Google Scholar 

  35. Atribak I, Bueno-López A, García-García A (2010) Uncatalysed and catalysed soot combustion under NOx + O2: real diesel versus model soots. Comb Flame 157:2086–2094

    Article  CAS  Google Scholar 

  36. Andana T, Piumetti M, Bensaid S, Veyre L, Thieuleux C, Russo N, Fino D, Quadrelli EA, Pironea R (2017) CuO nanoparticles supported by ceria for NOx-assisted soot oxidation: insight into catalytic activity and sintering. Appl Catal B 216:41–58

    Article  CAS  Google Scholar 

  37. Piumetti M, Andana T, Bensaid S, Fino D, Russo N, Pirone R (2016) Ceria-based Nanomaterials as catalysts for CO oxidation and soot combustion: effect of Zr-Pr doping and structural properties on the catalytic activity. AIChE J. https://doi.org/10.1002/aic.15548

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank the financial support provided by the Consejo Nacional de Ciencia y Tecnología (CONACYT) through the PDNPN1216 grant, Dirección General de Asuntos del Personal Académico-UNAM through the PAPIIT IN103719 grant and the Mexican Institute of Petroleum via the Molecular Engineering Program (Project D.00477). We also want to thank V. Maturano for the valuable technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Zanella.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camposeco, R., Castillo, S., Nava, N. et al. Boosting of Soot Combustion on Alkaline Mn/ZrO2 Nanostructures. Top Catal 63, 481–491 (2020). https://doi.org/10.1007/s11244-020-01224-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01224-z

Keywords

Navigation