Skip to main content
Log in

High-Strength Chitin Based Hydrogels Reinforced by Tannic Acid Functionalized Graphene for Congo Red Adsorption

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, a novel chitin based composite hydrogel reinforced by tannic acid modified reduced graphene oxide (TRGO) was prepared via a facile freezing–thawing approach. Epichlorohydrin (ECH) and TRGO sheets were employed as efficient crosslinkers to fabricate dually crosslinked TRGO/chitin composite hydrogels with advanced mechanical and adsorption properties. Results indicated that the TRGO reinforced chitin composites increased the mechanical property remarkably with exhibiting compression strength from 22.7 kPa for neat chitin hydrogel to 72.3 kPa for the hydrogel with loading of 7% TRGO. Multiple interactions such as hydrogen bonding between TRGO and chitin as well as the dually covalent crosslinking bonds were responsible for the extensive improvement in compression strength. Furthermore, the TRGO reinforced hydrogels exhibited an excellent adsorption capacity towards Congo red (CR). The maximum adsorption capacity of CR was 230.5 mg g−1 for chitin hydrogel with loading of 7% TRGO. The adsorption of CR was found following the Langmuir isotherm and pseudo-second-order models. Hence, the prepared TRGO/chitin hydrogels provide an easy and efficient way for the removal of CR dye from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wang Y, Li Y, Li H, Zheng H, Du Q (2019) J Polym Environ 27:1342

    Article  CAS  Google Scholar 

  2. Liu C, Liu H, Zhang K, Dou M, Pan B, He Y (2019) Bioresour Technol 282:148

    Article  CAS  Google Scholar 

  3. Mahmoud GA, Abdel-Aal SE, Badway NA, Elbayaa AA, Ahmed DF (2017) Polym Bull 74:337

    Article  CAS  Google Scholar 

  4. Eskhan A, Banat F, Selvaraj M, Haija MA (2019) Polym Bull 76:175

    Article  CAS  Google Scholar 

  5. Yu Z, Lau D (2015) J Mater Sci 21:7149

    Article  Google Scholar 

  6. Liu C, Liu H, Xiong T, Xu A, Tang K (2018) Polymers 10:835

    Article  Google Scholar 

  7. Jiang G, Zhao N, Zhang S, Wang X (2019) J Polym Environ 27:2201

    Article  CAS  Google Scholar 

  8. Esmizadeh E, Sadeghi T, Vahidifar A, Naderi G, Ghoreishy MH, Paran SM (2019) J Polym Environ 27:1529

    Article  CAS  Google Scholar 

  9. Srivastava N, Srivastava M, Gupta VK, Ramteke P, Mishra P (2018) Bioresour Technol 270:337

    Article  CAS  Google Scholar 

  10. Layek RK, Ramakrishnan KR, Sarlin E, Orell O, Kanerva M, Vuorinen J, Honkanen M (2018) J Mater Chem A 6:13203

    Article  CAS  Google Scholar 

  11. Liu H, Wu J, Liu C, Pan B, Kim NH, Lee JH (2018) Compos Part B 155:391

    Article  Google Scholar 

  12. Liu H, Liu C, Peng S, Pan B, Lu C (2018) Carbohyd Polym 182:52

    Article  CAS  Google Scholar 

  13. Armaghan G, Mohammad G, Mohammad E (2019) J Mater Sci 10:5269

    Google Scholar 

  14. Xiang C, Wang C, Guo R, Lan J, Lin S, Jiang S, Lai X, Zhang Y, Xiao H (2019) J Mater Sci 54:1872

    Article  CAS  Google Scholar 

  15. Akkaya B, Cakiroglu B, Ozacar M (2018) ACS Sustain Chem Eng 6:3805

    Article  CAS  Google Scholar 

  16. Zhao Z, Li L, Shao X, Liu X, Zhao S, Xie S, Xin Z (2018) Polym Test 70:396

    Article  CAS  Google Scholar 

  17. Liu R, Ge H, Wang X, Liu X, Zhao S, Xie S, Xin Z (2016) New J Chem 40:6332

    Article  CAS  Google Scholar 

  18. Liu H, Kuila T, Kim NH, Ku BC, Lee JH (2013) J Mater Chem A 1:3739

    Article  CAS  Google Scholar 

  19. Luo J, Zhang N, Lai J, Liu R, Liu X (2015) J Hazard Mater 300:615

    Article  CAS  Google Scholar 

  20. Li C, Zhuang Z, Jin X, Chen Z (2017) Appl Surf Sci 422:469

    Article  CAS  Google Scholar 

  21. Song X, Huang X, Li Z, Li Z, Wu K, Jiao Y, Zhou C (2019) Carbohyd Polym 207:704

    Article  CAS  Google Scholar 

  22. Guo Y, Duan B, Cui L, Zhu P (2015) Cellulose 22:2035

    Article  CAS  Google Scholar 

  23. Zhao S, Xie S, Zhao Z, Zhang J, Li L, Xin Z (2018) ACS Sustain Chem Eng 6:7652

    Article  CAS  Google Scholar 

  24. Lu Y, Sun Q, She X, Xia Y, Liu Y, Li J, Yang D (2013) Carbohyd Polym 98:1497

    Article  CAS  Google Scholar 

  25. Guo Y, Duan B, Zhou J, Zhu P (2014) Cellulose 21:1781

    Article  CAS  Google Scholar 

  26. Liu C, Liu H, Lu C, Tang K, Zhang Y (2017) J Mater Sci 52:11715

    Article  CAS  Google Scholar 

  27. Li W, Zhou B, Wang M, Li Z, Ren R (2015) J Mater Sci 50:5402

    Article  CAS  Google Scholar 

  28. Liu M, Zhang Y, Li J, Zhou C (2013) Int J Biol Macromol 58:23

    Article  CAS  Google Scholar 

  29. Zhang L, Wang Z, Xu C, Li Y, Gao J, Wang W, Liu Y (2011) J Mater Chem 21:10399

    Article  CAS  Google Scholar 

  30. Liu S, Ding Y, Li P, Diao K, Tan X, Lei F, Zhan Y, Li Q, Huang B, Huang Z (2014) Chem Eng J 248:135

    Article  CAS  Google Scholar 

  31. Kim UJ, Kimura S, Wada M (2019) Carbohyd Polym 214:294

    Article  CAS  Google Scholar 

  32. Liu Y, Huang H, Gan D, Guo L, Liu M, Chen J, Deng F, Zhou N, Zhang X (2018) Ceram Int 44:18571

    Article  CAS  Google Scholar 

  33. Lu N, He G, Liu J, Liu G, Li J (2018) Ceram Int 44:2463

    Article  CAS  Google Scholar 

  34. Dai H, Huang Y, Huang H (2018) Carbohyd Polym 185:1

    Article  Google Scholar 

  35. Ma J, Ma Y, Yu F (2018) ACS Sustain Chem Eng 6:8178

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the financial supports of HAUST (No. 13480067, 13480051), National Natural Science Foundation of China (51675162, U1704144). The project was supported by the Collaborative Innovation Center of Nonferrous Metals, Henan Province, China; Henan Province Key Laboratory of Nonferrous Metal Material Science and Processing Technology, Luoyang, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyu Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Liu, H., Tang, K. et al. High-Strength Chitin Based Hydrogels Reinforced by Tannic Acid Functionalized Graphene for Congo Red Adsorption. J Polym Environ 28, 984–994 (2020). https://doi.org/10.1007/s10924-020-01663-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01663-5

Keywords

Navigation