Skip to main content
Log in

The role of calreticulin mutations in myeloproliferative neoplasms

  • Progress in Hematology
  • Progress in elucidation of molecular pathophysiology and its application to therapeutic decisions of MPNs
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Unique frameshift mutations in the calreticulin (CALR) gene, which encodes an endoplasmic reticulum (ER)-localized molecular chaperone, have been identified in patients with essential thrombocythemia (ET) and primary myelofibrosis (PMF), which are subgroups of myeloproliferative neoplasms (MPNs). In this review, we discuss the current understanding of the consequences of these mutations with regard to tumorigenesis and/or signal transduction. Expression of mutant CALR induces thrombocytosis in animal models, producing the phenotype of ET. Mutant CALR preferentially interacts with and activates the thrombopoietin receptor MPL, resulting in MPL-dependent cellular transformation. A novel carboxyl-terminal sequence generated by a frameshift mutation in CALR mediates intermolecular interactions to form homomultimers and induces structural changes required for MPL binding and activation. The homomultimerized mutant CALR behaves similarly to a cytokine, stabilizing homodimerized MPL by binding to immature MPL N-glycans. Mutant CALR may engage with MPL in the ER, but fails to dissociate, conveying MPL to the cell surface where MPL activation is likely to occur. Collectively, cell-autonomous and constitutive activation of MPL is a cause of MPNs that are mediated by mutant CALR. Novel therapeutic strategies for treating MPNs that target these mechanisms should, therefore, be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7:387–97.

    Article  CAS  PubMed  Google Scholar 

  2. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352:1779–900.

    Article  CAS  PubMed  Google Scholar 

  3. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434:1144–8.

    Article  CAS  PubMed  Google Scholar 

  4. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365:1054–61.

    Article  CAS  PubMed  Google Scholar 

  5. Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3:e270.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pardanani AD, Levine RL, Lasho T, Pikman Y, Mesa RA, Wadleigh M, et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood. 2006;108:3472–6.

    Article  CAS  PubMed  Google Scholar 

  7. Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 2007;356:459–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vainchenker W, Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood. 2017;129:667–79.

    Article  CAS  PubMed  Google Scholar 

  9. Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369:2391–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369:2379–90.

    Article  CAS  PubMed  Google Scholar 

  11. Pietra D, Rumi E, Ferretti VV, Di Buduo CA, Milanesi C, Cavalloni C, et al. Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms. Leukemia. 2016;30:431–8.

    Article  CAS  PubMed  Google Scholar 

  12. Marty C, Pecquet C, Nivarthi H, El-Khoury M, Chachoua I, Tulliez M, et al. Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis. Blood. 2016;127:1317–24.

    Article  CAS  PubMed  Google Scholar 

  13. Elf S, Abdelfattah NS, Chen E, Perales-Paton J, Rosen EA, Ko A, et al. Mutant calreticulin requires both its mutant C-terminus and the thrombopoietin receptor for oncogenic transformation. Cancer Discov. 2016;6:368–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lim KH, Chang YC, Chiang YH, Lin HC, Chang CY, Lin CS, et al. Expression of CALR mutants causes mpl-dependent thrombocytosis in zebrafish. Blood Cancer J. 2016;6:e481.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shide K, Kameda T, Yamaji T, Sekine M, Inada N, Kamiunten A, et al. Calreticulin mutant mice develop essential thrombocythemia that is ameliorated by the JAK inhibitor ruxolitinib. Leukemia. 2017;31:1136–44.

    Article  CAS  PubMed  Google Scholar 

  16. Li J, Prins D, Park HJ, Grinfeld J, Gonzalez-Arias C, Loughran S, et al. Mutant calreticulin knockin mice develop thrombocytosis and myelofibrosis without a stem cell self-renewal advantage. Blood. 2018;131:649–61.

    Article  CAS  PubMed  Google Scholar 

  17. Toppaldoddi KR, da Costa CM, Bluteau O, Panneau-Schmaltz B, Pioch A, Muller D, et al. Rare type 1-like and type 2-like calreticulin mutants induce similar myeloproliferative neoplasms as prevalent type 1 and 2 mutants in mice. Oncogene. 2019;38:1651–60.

    Article  CAS  PubMed  Google Scholar 

  18. Shide K, Kameda T, Kamiunten A, Oji A, Ozono Y, Sekine M, et al. Mice with Calr mutations homologous to human CALR mutations only exhibit mild thrombocytosis. Blood Cancer J. 2019;9:42.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Michalak M, Groenendyk J, Szabo E, Gold LI, Opas M. Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J. 2009;417:651–66.

    Article  CAS  PubMed  Google Scholar 

  20. Araki M, Yang Y, Masubuchi N, Hironaka Y, Takei H, Morishita S, et al. Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms. Blood. 2016;127:1307–16.

    Article  CAS  PubMed  Google Scholar 

  21. Chachoua I, Pecquet C, El-Khoury M, Nivarthi H, Albu RI, Marty C, et al. Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood. 2016;127:1325–35.

    Article  CAS  PubMed  Google Scholar 

  22. Takei H, Edahiro Y, Mano S, Masubuchi N, Mizukami Y, Imai M, et al. Skewed megakaryopoiesis in human induced pluripotent stem cell-derived haematopoietic progenitor cells harbouring calreticulin mutations. Br J Haematol. 2018;181:791–802.

    Article  CAS  PubMed  Google Scholar 

  23. Han L, Schubert C, Kohler J, Schemionek M, Isfort S, Brummendorf TH, et al. Calreticulin-mutant proteins induce megakaryocytic signaling to transform hematopoietic cells and undergo accelerated degradation and Golgi-mediated secretion. J Hematol Oncol. 2016;9:45.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kollmann K, Warsch W, Gonzalez-Arias C, Nice FL, Avezov E, Milburn J, et al. A novel signalling screen demonstrates that CALR mutations activate essential MAPK signalling and facilitate megakaryocyte differentiation. Leukemia. 2017;31:934–44.

    Article  CAS  PubMed  Google Scholar 

  25. Araki M, Yang Y, Imai M, Mizukami Y, Kihara Y, Sunami Y, et al. Homomultimerization of mutant calreticulin is a prerequisite for MPL binding and activation. Leukemia. 2019;33:122–31.

    Article  CAS  PubMed  Google Scholar 

  26. Elf S, Abdelfattah NS, Baral AJ, Beeson D, Rivera JF, Ko A, et al. Defining the requirements for the pathogenic interaction between mutant calreticulin and MPL in MPN. Blood. 2018;131:782–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Masubuchi N, Araki M, Yang Y, Hayashi E, Imai M, Edahiro Y, et al. Mutant calreticulin interacts with MPL in the secretion pathway for activation on the cell surface. Leukemia. 2019. https://doi.org/10.1038/s41375-019-0564-z.

    Article  PubMed  Google Scholar 

  28. Araki M, Komatsu N. Mutant molecular chaperone activates cytokine receptor as a homomultimer. Oncotarget. 2018;9:35201–2.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pecquet C, Chachoua I, Roy A, Balligand T, Vertenoeil G, Leroy E, et al. Calreticulin mutants as oncogenic rogue chaperones for TpoR and traffic-defective pathogenic TpoR mutants. Blood. 2019;133:2669–811.

    Article  CAS  PubMed  Google Scholar 

  30. Pecquet C, Balligand T, Chachoua I, Roy A, Vertenoeil G, Colau D, et al. Secreted mutant calreticulins as rogue cytokines trigger thrombopoietin receptor activation specifically in CALR mutated cells: perspectives for MPN therapy. Blood. 2018;132:4.

    Article  Google Scholar 

  31. Pronier E, Cifani P, Merlinsky TR, Berman KB, Somasundara AVH, Rampal RK, et al. Targeting the CALR interactome in myeloproliferative neoplasms. JCI Insight. 2018;3:e122703.

    Article  PubMed Central  Google Scholar 

  32. Arshad N, Cresswell P. Tumor-associated calreticulin variants functionally compromise the peptide loading complex and impair its recruitment of MHC-I. J Biol Chem. 2018;293:9555–699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded in part by the MEXT-Supported Program for the Strategic Research Foundation at Private Universities; MEXT’s Promotion Plan for the Platform of Human Resource Development for Cancer Project; the JSPS KAKENHI Grant #16K09859, #17H04211, #18K08372, #19K08848; grants from the Takeda Science Foundation, the SENSHIN Medical Research Foundation and the Japan Leukemia Research Fund. The funders had no role in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norio Komatsu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araki, M., Komatsu, N. The role of calreticulin mutations in myeloproliferative neoplasms. Int J Hematol 111, 200–205 (2020). https://doi.org/10.1007/s12185-019-02800-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-019-02800-0

Keywords

Navigation