Skip to main content
Log in

Thermodynamics of the Interaction Between Graphene Quantum Dots with Human Serum Albumin and γ-Globulins

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

As one of the newly emerged nanomaterials, graphene quantum dots (GQDs) have shown great application potential as tracking probes and drug carriers in biological areas. The GQDs synthesized via the nitric acid reflux method in this study turned out to quench the fluorescence of human serum albumin (HSA) and gamma globulin (γ-globulin) in two different functional ways. The fluorescence quenching effect of GQDs on HSA is a static pattern and the predominant interaction forces are hydrogen bonds and van der Waals forces. Distinct from HSA, the interaction between GQDs and γ-globulins belongs to dynamic quenching and is driven by electrostatic forces. Ultraviolet–visible (UV–vis) differential spectrometry and transient state fluorescence spectrometry were also utilized to further confirm their quenching types. Also, thermodynamics parameters, the enthalpy change (ΔH) and entropy change (ΔS) of reaction between GQDs and proteins were obtained through a series of calculations from the van’t Hoff equation. Furthermore, the effect of GQDs on the conformational structure of proteins was characterized by synchronous fluorescence spectra (SFS), three-dimensional (3D) fluorescence and circular dichroism (CD) spectra. In addition, the binding mechanism of GQDs with HSA and γ-globulins were proposed based on the obtained experimental results. The research on the reaction between GQDs with HSA and γ-globulins offers promising insight for the further application of nanomaterials in biomedical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ponomarenko, L.A., Schedin, F., Katsnelson, M.I., Yang, R., Hill, E.W., Novoselov, K.S., Geim, A.K.: Chaotic Dirac billiard in graphene quantum dots. Science 320, 356–358 (2008)

    PubMed  CAS  Google Scholar 

  2. Ge, J., Lan, M., Zhou, B., Liu, W., Guo, L., Wang, H., Jia, Q., Niu, G., Huang, X., Zhou, H., Meng, X., Wang, P., Lee, C.S., Zhang, W., Han, X.: A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 5, 4596–4604 (2014)

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Ye, R., Xiang, C., Lin, J., Peng, Z., Huang, K., Yan, Z., Cook, N.P., Samuel, E.L.G., Hwang, C.-C., Ruan, G., Ceriotti, G., Raji, A.-R.O., Mari, A.A., Tour, J.M.: Coal as an abundant source of graphene quantum dots. Nat. Commun. 4, 2943–2948 (2013)

    PubMed  Google Scholar 

  4. Liu, Q., Guo, B., Rao, Z., Zhang, B., Gong, J.R.: Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett. 13, 2436–2441 (2013)

    PubMed  CAS  Google Scholar 

  5. Chen, J., Than, A., Li, N., Ananthanarayanan, A., Zheng, X., Xi, F., Liu, J., Tian, J., Chen, P.: Sweet graphene quantum dots for imaging carbohydrate receptors in live cells. FlatChem 5, 25–32 (2017)

    CAS  Google Scholar 

  6. Li, N., Than, A., Wang, X., Xu, S., Sun, L., Duan, H., Xu, C., Chen, P.: Ultrasensitive profiling of metabolites using tyramine-functionalized graphene quantum dots. ACS Nano 10, 3622–3629 (2016)

    PubMed  CAS  Google Scholar 

  7. Yan, Y., Chen, J., Li, N., Tian, J., Li, K., Jiang, J., Liu, J., Tian, Q., Chen, P.: Systematic bandgap engineering of graphene quantum dots and applications for photocatalytic water splitting and CO2 reduction. ACS Nano 12, 3523–3532 (2018)

    PubMed  CAS  Google Scholar 

  8. Luo, Z.M., Qi, G.Q., Chen, K.Y., Zou, M., Yuwen, L.H., Zhang, X.W., Huang, W., Wang, L.H.: Microwave-assisted preparation of white fluorescent graphene quantum dots as a novel phosphor for enhanced white-light-emitting diodes. Adv. Funct. Mater. 26, 2739–2744 (2016)

    CAS  Google Scholar 

  9. Li, X.M., Rui, M.C., Song, J.Z., Shen, Z.H., Zeng, H.B.: Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Adv. Funct. Mater. 25, 4929–4947 (2015)

    CAS  Google Scholar 

  10. Flarakos, J., Morand, K.L., Vouros, P.: High-throughput solution-based medicinal library screening against human serum albumin. Anal. Chem. 77, 1345–1353 (2005)

    PubMed  CAS  Google Scholar 

  11. Drews, J.: Drug discovery: a historical perspective. Science 287, 1960–1964 (2000)

    PubMed  CAS  Google Scholar 

  12. Carter, D.C.: Structure of serum albumin. Adv. Protein Chem. 45, 153–176 (1994)

    PubMed  CAS  Google Scholar 

  13. Casals, E., Pfaller, T., Duschl, A., Oostingh, G.J., Puntes, V.: Time evolution of the nanoparticle protein corona. ACS Nano 4, 3623–3632 (2010)

    PubMed  CAS  Google Scholar 

  14. Mendez, D.L., Jensen, R.A., Mcelroy, L.A., Pena, J.M., Esquerra, R.M.: The effect of non-enzymatic glycation on the unfolding of human serum albumin. Arch. Biochem. Biophys. 444, 92–99 (2005)

    PubMed  CAS  Google Scholar 

  15. Yang, B., Liu, R., Hao, X., Wu, Y., Du, J.: Effect of CdTe quantum dots size on the conformational changes of human serum albumin: results of spectroscopy and isothermal titration calorimetry. Biol. Trace Elem. Res. 155, 150–158 (2013)

    PubMed  CAS  Google Scholar 

  16. Balaei, F., Ghobadi, S.: Hydrochlorothiazide binding to human serum albumin induces some compactness in the molecular structure of the protein: a multi-spectroscopic and computational study. J. Pharm. Biomed. Anal 162, 1–8 (2019)

    PubMed  CAS  Google Scholar 

  17. Wang, B.L., Pan, D.Q., Zhou, K.L., Lou, Y.Y., Shi, J.H.: Multi-spectroscopic approaches and molecular simulation research of the intermolecular interaction between the angiotensin-converting enzyme inhibitor (ace inhibitor) benazepril and bovine serum albumin (BSA). Spectrochim. Acta A 212, 15–24 (2019)

    CAS  Google Scholar 

  18. Li, M.-Y., Xiao, C.-Q., Xu, Z.-Q., Yin, M.-M., Yang, Q.-Q., Yin, Y.-L., Liu, Y.: Role of surface charge on the interaction between carbon nanodots and human serum albumin. Spectrochim. Acta 204, 484–494 (2018)

    CAS  Google Scholar 

  19. Yin, M.-M., Dong, P., Chen, W.-Q., Xu, S.-P., Yang, L.-Y., Jiang, F.-L., Liu, Y.: Thermodynamics and mechanisms of the interactions between ultrasmall fluorescent gold nanoclusters and human serum albumin, γ-globulins, and transferrin: a spectroscopic approach. Langmuir 33, 5108–5116 (2017)

    PubMed  CAS  Google Scholar 

  20. Huang, S., Qiu, H., Lu, S., Zhu, F., Xiao, Q.: Study on the molecular interaction of graphene quantum dots with human serum albumin: combined spectroscopic and electrochemical approaches. J. Hazard. Mater. 285, 18–26 (2015)

    PubMed  CAS  Google Scholar 

  21. Xiao, Q., Liang, Y., Liu, Y., Lu, S.Y., Huang, S.: Comparison of molecular interactions of Ag2Te and CdTe quantum dots with human serum albumin by spectroscopic approaches. Luminescence 33, 181–189 (2018)

    PubMed  CAS  Google Scholar 

  22. Ahmad, B., Parveen, S., Khan, R.H.: Effect of albumin conformation on the binding of ciprofloxacin to human serum albumin: a novel approach directly assigning binding site. Biomacromol 7, 1350–1356 (2006)

    CAS  Google Scholar 

  23. Lakowicz, J.R.: Principles of Fluorescence Spectroscopy, 2nd edn. Plenum Press, New York (2006)

    Google Scholar 

  24. Wang, Q., Huang, C.R., Jiang, M., Zhu, Y.Y., Wang, J., Chen, J., Shi, J.H.: Binding interaction of atorvastatin with bovine serum albumin: spectroscopic methods and molecular docking. Spectrochim. Acta A 156, 155–163 (2016)

    CAS  Google Scholar 

  25. Gao, T., Wang, X., Yang, L.-Y., He, H., Ba, X.X., Zhao, J., Liang, F.-L., Liu, Y.: Red, yellow, and blue luminescence by graphene quantum dots: syntheses, mechanism, and cellular imaging. ACS Appl. Mater. Interfaces 9, 24846–24856 (2017)

    PubMed  CAS  Google Scholar 

  26. Tian, F.-F., Jiang, F.-L., Han, X.-L., Xiang, C., Ge, Y.-S., Li, J.-H., Zhang, Y., Li, R., Ding, X.-L., Liu, Y.: Synthesis of a novel hydrazone derivative and biophysical studies of its interactions with bovine serum albumin by spectroscopic, electrochemical, and molecular docking methods. J. Phys. Chem. B 114, 14842–14853 (2010)

    PubMed  CAS  Google Scholar 

  27. Lehrer, S.: Corrections-solute perturbation of protein fluorescence the quenching of the tryptophyl fluorescence of model compounds and lysozyme by iodide ion. Biochemistry 10, 4995–4995 (2003)

    Google Scholar 

  28. Wilson, C.J., Copeland, R.A.: Spectroscopic characterization of Arrestin interactions with competitive ligands: study of heparin and phytic acid binding. J. Protein Chem. 16, 755–763 (1997)

    PubMed  CAS  Google Scholar 

  29. Watt, R.M., Voss, E.W.: Solvent perturbation of the fluorescence of fluorescein bound to specific antibody. Fluorescence quenching of the bound fluorophore by iodide. J. Biol. Chem. 254, 1684–1690 (1979)

    PubMed  CAS  Google Scholar 

  30. Liu, W., Li, C., Ren, Y., Sun, X., Pan, W., Li, Y., Wang, J., Wang, W.: Carbon dots: surface engineering and applications. J. Phys. Chem. B 4, 5772–5788 (2016)

    CAS  Google Scholar 

  31. Park, Y., Yoo, J., Lim, B., Kwon, W., Rhee, S.-W.: Improving functionality of carbon nanodots: doping and surface functionalization. J. Mater. Chem. A 4, 11582–11603 (2016)

    CAS  Google Scholar 

  32. Xiao, C.Q., Jiang, F.L., Zhou, B., Li, R., Liu, Y.: Interaction between a cationic porphyrin and bovine serum albumin studied by surface plasmon resonance, fluorescence spectroscopy and cyclic voltammetry. Photochem. Photobiol. Sci. 10, 1110–1117 (2011)

    PubMed  CAS  Google Scholar 

  33. Meng, L.Z., Gong, S.L., He, B.Y.: Organic Spectral Analysis, 3rd edn. Wuhan University Press, Wuhan (2009)

    Google Scholar 

  34. Yin, B.T., Yan, C.Y., Peng, X.M., Zhang, S.L., Rasheed, S., Geng, R.X., Zhou, C.H.: Synthesis and biological evaluation of α-triazolyl chalcones as a new type of potential antimicrobial agents and their interaction with calf thymus DNA and human serum albumin. Eur. J. Med. Chem. 71, 148–159 (2014)

    PubMed  CAS  Google Scholar 

  35. Xiao, Q., Qiu, H., Huang, S., Huang, C., Su, W., Hu, B., Liu, Y.: Systematic investigation of interactions between papain and MPA-capped CdTe quantum dots. Mol. Biol. Rep. 40, 5781–5789 (2013)

    PubMed  CAS  Google Scholar 

  36. Zhang, Y., Zhong, Q.: Probing the binding between norbixin and dairy proteins by spectroscopy methods. Food Chem. 139, 611–616 (2013)

    PubMed  CAS  Google Scholar 

  37. Yang, H., Liu, Y., Guo, Z., Lei, B., Zhuang, J., Zhang, X., Liu, Z., Hu, C.: Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission. Nat. Commun. 10, 1789–1800 (2019)

    PubMed  PubMed Central  Google Scholar 

  38. De Paoli Lacerda, S.H., Park, J.J., Meuse, C., Pristinski, D., Becker, M.L., Karim, A., Douglas, J.F.: Interaction of gold nanoparticles with common human blood proteins. ACS Nano 4, 365–379 (2010)

    Google Scholar 

  39. Ross, P.D., Subramanian, S.: Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20, 3096–3102 (1981)

    PubMed  CAS  Google Scholar 

  40. Jiang, X., Jiang, J., Jin, Y., Wang, E., Dong, S.: Effect of colloidal gold size on the conformational changes of adsorbed cytochromec: probing by circular dichroism, UV–visible, and infrared spectroscopy. Biomacromol 6, 46–53 (2005)

    CAS  Google Scholar 

  41. Xiao, Q., Huang, S., Ma, J., Su, W., Li, P., Cui, J., Liu, Y.: Systematically investigation of interactions between BSA and different charge-capped CdSe/ZnS quantum dots. J. Photochem. Photobiol. A 249, 53–60 (2012)

    CAS  Google Scholar 

  42. Patra, D., Mishra, A.K.: Recent developments in multi-component synchronous fluorescence scan analysis. Trac-Trends Anal. Chem. 21, 787–798 (2002)

    CAS  Google Scholar 

  43. Devos, O., Fanget, B., Saber, A.-I., Paturel, L., Naffrechoux, E., Jarocz, J.: Use of a Plackett-–Burman design with multivariate calibration for the analysis of polycyclic aromatic hydrocarbons in micellar media by synchronous fluorescence. Anal. Chem. 74, 678–683 (2002)

    PubMed  CAS  Google Scholar 

  44. Miller, J.M.: Recent advances in molecular luminescence analysis. Proc. Anal. Div. Chem. Soc. 16, 203–208 (1979)

    CAS  Google Scholar 

  45. Miles, A.J., Wallace, B.A.: Synchrotron radiation circular dichroism spectroscopy of proteins and applications in structural and functional genomics. Chem. Soc. Rev. 35, 39–51 (2006)

    PubMed  CAS  Google Scholar 

  46. Chen, Y.H., Yang, J.T., Chau, K.H.: Determination of the helix and β form of proteins in aqueous solution by circular dichroism. Biochemistry 13, 3350–3359 (1974)

    PubMed  CAS  Google Scholar 

  47. Dong, A., Matsuura, J., Allison, S.D., Chrisman, E., Nanning, M.C., Carpenter, J.F.: Infrared and circular dichroism spectroscopic characterization of structural differences between β-lactoglobulin A and B. Biochemistry 35, 1450–1457 (1996)

    PubMed  CAS  Google Scholar 

  48. Xu, Z.Q., Yang, Q.Q., Lan, J.Y., Zhang, J.Q., Peng, W., Jin, J.C., Jiang, F.L., Liu, Y.: Interactions between carbon nanodots with human serum albumin and γ-globulins: the effects on the transportation function. J. Hazard. Mater. 301, 242–249 (2016)

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from National Nature Science Foundation of China (Grant No. 21873075), Guangxi Scientific and Technological Development Projects (AD17195081), and BAGUI Scholar Program of Guangxi Province of China (2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1689 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ba, XX., Gao, T., Yang, M. et al. Thermodynamics of the Interaction Between Graphene Quantum Dots with Human Serum Albumin and γ-Globulins. J Solution Chem 49, 100–116 (2020). https://doi.org/10.1007/s10953-019-00941-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-019-00941-8

Keywords

Navigation