Skip to main content
Log in

Highly stretchable and thermally healable polyampholyte hydrogels via hydrophobic modification

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Aqueous solutions or gels of polyampholytes attract interest for more than half a century due to their several attractive properties. We present here thermally healable hydrophobically modified physical polyampholyte (PA) hydrogels based on oppositely charged 2-acrylamido-2-methylpropane-1-sulfonic acid sodium salt (AMPS) and (3-acrylamidopropyl) trimethylammonium chloride (APTAC) monomers. PA hydrogels were prepared via micellar polymerization technique in the presence of the hydrophobic monomer n-octadecyl acrylate (C18A) in aqueous sodium dodecyl sulfate (SDS) solutions. Charge-balanced PA hydrogels containing 60–90% water exhibit a high tensile strength and stretchability of up to 202 kPa and 1239%, respectively. Above 7 mol% C18A, swollen hydrogels containing around 90% water exhibit much better mechanical properties as compared with the corresponding as-prepared ones because of the stronger hydrophobic interactions in the absence of SDS micelles. Cut-and-heal tests conducted at 50 °C reveal a complete healing efficiency with respect to Young’s modulus for all as-prepared PA hydrogels within 1–4 h.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alfrey JT, Morawetz H, Fitzgerald EB, Fuoss RM (1950) Synthetic electrical analog of proteins. J Am Chem Soc 72:1864–1864

    CAS  Google Scholar 

  2. Katchalsky A, Miller IR (1954) Polyampholytes. J Polym Sci 13:57–68

    CAS  Google Scholar 

  3. Patrickios CS, Hertler WR, Abbott NL, Hatton TA (1994) Diblock, ABC triblock, and random methacrylic polyampholytes: synthesis by group transfer polymerization and solution behavior. Macromolecules 27:930–937

    CAS  Google Scholar 

  4. Kudaibergenov SE (2002) Polyampholytes: synthesis, characterization and application. Plenum, New York

    Google Scholar 

  5. Lowe AB, McCormick CL (2002) Synthesis and solution properties of zwitterionic polymers. Chem Rev 102:4177–4189

    CAS  PubMed  Google Scholar 

  6. Lowe AB, McCormick CL (2006) Eds., Polyelectrolytes and polyzwitterions: synthesis, properties and applications; ACS Symposium Series, American Chemical Society: Washington, 937

    Google Scholar 

  7. Kudaibergenov SE, Nuraje N, Khutoryanskiy VV (2012) Amphoteric nano-, micro-, and macrogels, membranes and thin films. Soft Matter 8:930–9321

    Google Scholar 

  8. Zurick KM, Bernards M (2014) Recent biomedical advances with polyampholyte polymers. J Appl Polym Sci 131. https://doi.org/10.1002/app.40069

    Google Scholar 

  9. Kudaibergenov SE, Ciferri A (2007) Natural and synthetic polyampholytes 2. Functions and applications. Macromol Rapid Commun 28:1969–1986

    CAS  Google Scholar 

  10. Kudaibergenov S, Koetz J, Nuraje N (2018) Nanostructured hydrophobic polyampholytes: self-assembly, stimuli-sensitivity, and application. Adv Comp Hybrid Mater 1:649–684

    CAS  Google Scholar 

  11. Rullens F, Devillers M, Laschewsky A (2004) New regular, amphiphilic poly (ampholyte)s: synthesis and characterization. Macromol Chem Phys 205:1155–1166

    CAS  Google Scholar 

  12. Baker JP, Stephens DR, Blanch HW, Prausnitz JM (1992) Swelling equilibria for acrylamide-based polyampholyte hydrogels. Macromolecules 25:1955–1958

    CAS  Google Scholar 

  13. Baker JP, Blanch HW, Prausnitz JM (1995) Swelling properties of acrylamide-based ampholytic hydrogels: comparison of experiment with theory. Polymer 36:1061–1069

    CAS  Google Scholar 

  14. Annaka M, Tanaka T (1992) Multiple phases of polymer gels. Nature 355:430–432

    CAS  Google Scholar 

  15. Mafe S, Manzanares JA, English AE, Tanaka T (1997) Multiple phases in ionic copolymer gels. Phys Rev Lett 79:3086–3089

    CAS  Google Scholar 

  16. Dogu S, Kilic M, Okay O (2009) Collapse of acrylamide-based polyampholyte hydrogels in water. J Appl Polym Sci 113:1375–1382

    CAS  Google Scholar 

  17. Gao M, Gawel K, Stokke BT (2014) Polyelectrolyte and antipolyelectrolyte effects in swelling of polyampholyte and polyzwitterionic charge balanced and charge offset hydrogels. Eur Polym J 53:65–74

    CAS  Google Scholar 

  18. Carr LR, Xue H, Jiang S (2011) Functionalizable and nonfouling zwitterionic carboxybetaine hydrogels with a carboxybetaine dimethacrylate crosslinker. Biomaterials 32:961–968

    CAS  PubMed  Google Scholar 

  19. Liu SQ, Yang C, Huang Y, Ding X, Li Y, Fan WM, Hedrick JL, Yang YY (2012) Antimicrobial and antifouling hydrogels formed in situ from polycarbonate and poly (ethylene glycol) via Michael addition. Adv Mater 24:6484–6489

    CAS  PubMed  Google Scholar 

  20. Mi L, Jiang S (2012) Synchronizing nonfouling and antimicrobial properties in a zwitterionic hydrogel. Biomaterials 33:8928–8933

    CAS  PubMed  Google Scholar 

  21. Constantinou AP, Elladiou M, Patrickios CS (2016) Regular and inverse polyampholyte hydrogels: a detailed comparison. Macromolecules 49:3869–3880

    CAS  Google Scholar 

  22. Grinberg VY, Burova TV, Grinberg NV, Alvarez-Lorenzo C, Khokhlov AR (2019) Protein-like energetics of conformational transitions in a polyampholyte hydrogel. Polymer 179:121617

    CAS  Google Scholar 

  23. Kudaibergenov S (2019) Physicochemical, complexation and catalytic properties of polyampholyte cryogels. Gels 5:8

    CAS  PubMed Central  Google Scholar 

  24. Fan Y, Zhou W, Yasin A, Li H, Yang H (2015) Dual-responsive shape memory hydrogels with novel thermoplasticity based on a hydrophobically modified polyampholyte. Soft Matter 11:4218–4225

    CAS  PubMed  Google Scholar 

  25. Sun TL, Kurokawa T, Kuroda S, Ihsan AB, Akasaki T, Sato K, Haque A, Nakajima T, Gong JP (2013) Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat Mater 12:932–937

    CAS  PubMed  Google Scholar 

  26. Ihsan AB, Sun TL, Kurokawa T, Karobi SN, Nakajima T, Nonoyama T, Roy CK, Luo F, Gong JP (2016) Self-healing behaviors of tough polyampholyte hydrogels. Macromolecules 49:4245–4252

    Google Scholar 

  27. Su E, Okay O (2017) Polyampholyte hydrogels formed via electrostatic and hydrophobic interactions. Eur Polym J 88:191–204

    CAS  Google Scholar 

  28. Candau F, Selb J (1999) Hydrophobically-modified polyacrylamides prepared by micellar polymerization. Adv Colloid Interf Sci 79:149–172

    CAS  Google Scholar 

  29. Volpert E, Selb J, Candau F (1998) Associating behaviour of polyacrylamides hydrophobically modified with dihexylacrylamide. Polymer 39:1025–1033

    CAS  Google Scholar 

  30. Hill A, Candau F, Selb J (1993) Properties of hydrophobically associating polyacrylamides: influence of the method of synthesis. Macromolecules 26:4521–4532

    CAS  Google Scholar 

  31. Regalado EJ, Selb J, Candau F (1999) Viscoelastic behavior of semidilute solutions of multisticker polymer chains. Macromolecules 32:8580–8588

    CAS  Google Scholar 

  32. Kujawa P, Audibert-Hayet A, Selb J, Candau F (2006) Effect of ionic strength on the rheological properties of multisticker associative polyelectrolytes. Macromolecules 39:384–392

    CAS  Google Scholar 

  33. Tuncaboylu DC, Sari M, Oppermann W, Okay O (2011) Tough and self-healing hydrogels formed via hydrophobic interactions. Macromolecules 44:4997–5005

    CAS  Google Scholar 

  34. Tuncaboylu DC, Sahin M, Argun A, Oppermann W, Okay O (2012) Dynamics and large strain behavior of self-healing hydrogels with and without surfactants. Macromolecules 45:1991–2000

    CAS  Google Scholar 

  35. Tuncaboylu DC, Argun A, Sahin M, Sari M, Okay O (2012) Structure optimization of self-healing hydrogels formed via hydrophobic interactions. Polymer 53:5513–5522

    CAS  Google Scholar 

  36. Can V, Kochovski Z, Reiter V, Severin N, Siebenbürger M, Kent B, Just J, Rabe JP, Ballauff M, Okay O (2016) Nanostructural evolution and self-healing mechanism of micellar hydrogels. Macromolecules 49:2281–2287

    CAS  Google Scholar 

  37. Bilici C, Can V, Nöchel U, Behl M, Lendlein A, Okay O (2016) Melt-processable shape-memory hydrogels with self-healing ability of high mechanical strength. Macromolecules 49:7442–7449

    CAS  Google Scholar 

  38. Argun A, Can V, Altun U, Okay O (2014) Non-ionic double and triple network hydrogels of high mechanical strength. Macromolecules 47:6430–6440

    CAS  Google Scholar 

  39. Su E, Okay O (2019) A self-healing and highly stretchable polyelectrolyte hydrogel via cooperative hydrogen-bonding as a superabsorbent polymer. Macromolecules 52:3257–3267

    CAS  Google Scholar 

  40. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, New York

    Google Scholar 

  41. Treloar LRG (1975) The physics of rubber elasticity3rd edn. Oxford University Press, Oxford

    Google Scholar 

  42. Durmaz S, Okay O (2000) Acrylamide/2-acrylamido-2-methylpropane sulfonic acid sodium salt-based hydrogels: synthesis and characterization. Polymer 41:3693–3704

    CAS  Google Scholar 

Download references

Acknowledgments

E.S. thanks Science Fellowships and Grant Programmes (BIDEB) of the Scientific and Technological Research Council of Turkey (TUBITAK) for a Ph.D. scholarship. O. O. thanks Turkish Academy of Sciences (TUBA) for the partial support.

Funding

The work was supported by Ministry of Education and Science of the Republic of Kazakhstan (IRN AP05131003, 2018–2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oguz Okay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

• Physical polyampholyte hydrogels are prepared via micellar polymerization technique.

• Incorporation of hydrophobes within the gel network provides their water stability.

• The hydrogels containing 60–90% water exhibit a high stretchability of up to 1239%.

• They exhibit a complete healing efficiency at 50 °C within 1–4 h.

Electronic supplementary material

ESM 1

(DOCX 378 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toleutay, G., Su, E., Kudaibergenov, S. et al. Highly stretchable and thermally healable polyampholyte hydrogels via hydrophobic modification. Colloid Polym Sci 298, 273–284 (2020). https://doi.org/10.1007/s00396-020-04605-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04605-8

Keywords

Navigation