Skip to main content

Advertisement

Log in

Distribution patterns of ruderal plant diversity in Greece

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Ruderal plant species typically occur and prevail in frequently disturbed areas especially in sites with pronounced direct or indirect human activity. In Greece ruderal taxa (both exclusive and non-exclusive) account for 23.9% of all recorded plant taxa. This study presents an analysis of the ruderal plant diversity patterns in the 13 floristic regions of Greece and different aspects of ruderal diversity related to alien taxa and to taxa of conservation interest. Although many ruderal plant taxa are common and widespread, their contribution to the diversity of each floristic region ranges between 27.8% in the North Central and 41.6% in the Cyclades region. Spatial distribution analysis revealed that the ruderal flora presents higher frequency of occurrence in major urban areas, in coastal and low to medium elevation mainland and island areas. The total number of ruderal taxa per floristic region is strongly correlated with the total number of taxa per region. The richness in exclusive ruderal taxa is highly correlated with surface area proportions of settlements and other built-up areas, as well as with artificial land, wetlands, sparsely vegetated land and shrublands. Ruderals account for a greater proportion of taxa in species-poor regions than in species-rich ones. Patterns of ruderal taxa diversity proved to be rather complicated and different spatial scales must be considered if ruderal biodiversity of the cultural landscapes in Greece is to be preserved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Albrecht H, Haider S (2013) Species diversity and life history traits in calcareous grasslands vary along an urbanization gradient. Biodivers Conserv 22:2243–2267

    Google Scholar 

  • Arianoutsou M, Margaris NS (1981) Producers and the fire cycle in a phryganic ecosystem. In: Margaris NS, Mooney HA (eds) Components of productivity of mediterranean-climate regions, Basic and applied aspects, Dr. W. Junk Publishers, The Hague, pp 181–190

    Google Scholar 

  • Arianoutsou M, Bazos I, Delipetrou P, Kokkoris Y (2010a) The alien flora of Greece: taxonomy, life traits and habitat preferences. Biol Invasions 12:3525–3549

    Google Scholar 

  • Arianoutsou M, Delipetrou P, Celesti-Grapow P, Basnou C, Bazos I, Kokkoris Y, Blasi C, Vila M (2010b) Comparing naturalized alien plants and recipient habitats across an east–west gradient in the Mediterranean Basin. J Biogeogr 37:1811–1823

    Google Scholar 

  • Arianoutsou M, Delipetrou P, Vilà M, Dimitrakopoulos PG, Celesti-Grapow L, Henderson L, Wardell-Johnson G, Ugarte-Mendes E, Rundel PW (2013) Comparative patterns of plant invasions in the Mediterranean biome. PLoS ONE 8:e79174. https://doi.org/10.1371/journal.pone.0079174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badalamenti E, Cusimano D, La Mantia T, Pasta S, Romano S, Troìa A, Ilardi V (2018) The ongoing naturalisation of Eucalyptus spp. in the Mediterranean Basin: new threats to native species and habitats. Aust For. https://doi.org/10.1080/00049158.2018.1533512

    Article  Google Scholar 

  • Baran J, Pielech R, Bodziarczyk J (2018) No difference in plant species diversity between protected and managed ravine forests. For Ecol Manag 430:587–593

    Google Scholar 

  • Barbero M, Bonin G, Loisel R, Quézel P (1990) Changes and disturbances of forest ecosystems caused by human activities in the western part of the Mediterranean basin. Vegetatio 87:151–173

    Google Scholar 

  • Bergmeier E (1990) Spontanvegetation nordgriechischer Bergdörfer. Folia Geobot Phytotx 25:27–61

    Google Scholar 

  • Bergmeier E (2005) Eine pflanzensoziologische Studie zu traditionell bewirtschafteten Getreideäckern auf Kreta. Hoppea 66:351–375

    Google Scholar 

  • Bergmeier E (2006) The diversity of segetal weeds in Crete (Greece) at species and community level. Ann di Bot 6:53–64

    Google Scholar 

  • Bergmeier E, Goedecke F (2017) Platanus orientalis woodlands of Crete—Diversity, distribution and conservation status. In: Achille G (ed) Scritti in onore di Franco Pedrotti. Collana Natura e areeprotette vol 32, pp 45–61

  • Bergmeier E, Meyer S (2018) Segetal plants of winter-annual crop fields in the Aegean islands—viewed in the contexts of landscape and traditional agricultural practice. Berichte der Reinhold-Tüxen-Gesellschaft 30:73–84

    Google Scholar 

  • Bergmeier E, Strid A (2014) Regional diversity, population trends and threat assessment of the weeds of traditional agriculture in Greece. Botan J Linnean Soc 175:607–623

    Google Scholar 

  • Bourgeois B, Munoz F, Fried G, Mahaut L, Armengot L, Denelle P, Storkey J et al (2019) What makes a weed a weed? A large-scale evaluation of arable weeds through a functional lens. Am J Bot 106(1):90–100

    PubMed  Google Scholar 

  • Chiuffo MC, Cock MC, Prina AO, Hierro JL (2018) Response of native and non-native ruderals to natural and human disturbance. Biol Invasions. https://doi.org/10.1007/s10530-018-1745-9

    Article  Google Scholar 

  • Concepción ED, Obrist MK, Moretti M et al (2016) Impacts of urban sprawl on species richness of plants, butterflies, gastropods and birds: not only built-up area matters. Urb Ecosyst 19:225–242

    Google Scholar 

  • Dearborn DC, Kark S (2010) Motivations for conserving urban biodiversity. Conserv Biol 24(2):432–440

    PubMed  Google Scholar 

  • Dimitrakopoulos PG, Koukoulas S, Galanidis A, Delipetrou P, Gounaridis D, Touloumi K, Arianoutsou M (2017) Factors shaping alien plant species richness spatial patterns across Natura 2000 Special Areas of Conservation of Greece. Sci Total Environ 601–602:461–468

    PubMed  Google Scholar 

  • Dimopoulos P, Raus T, Bergmeier E, Constantinidis T, Iatrou G, Kokkini S, Strid A, Tzanoudakis D (2013) Vascular plants of Greece: an annotated checklist. Englera 31 Berlin: Botanischer Garten und Botanisches Museum Berlin-Dahlem

  • Dimopoulos P, Raus T, Bergmeier E, Constantinidis Th, Iatrou G, Kokkini S, Strid A, Tzanoudakis D (2016) Vascular plants of Greece—an annotated checklist. Supplement. Willdenowia 46:301–347

    Google Scholar 

  • Dormann CF et al (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628

    Google Scholar 

  • Dornelas M, Gotelli NG, McGill B, Shimadzu H, Moyes F, Sievers C, Magurran AE (2014) Assemblage time series reveal biodiversity change but not systematic loss. Science 344:296–299

    CAS  PubMed  Google Scholar 

  • Edvardsen A, Halvorsen R, Norderhaug A, Pedersen O, Rydgren K (2010) Habitat specificity of patches in modern agricultural landscapes. Landsc Ecol 25:1071–1083

    Google Scholar 

  • Fenesi A, Sándor D, Pyšek P, Dawson W, Ruprecht E, Essl F, Kreft H, Pergl J, Weigelt P, Winter M, van Kleunen M (2019) The role of fruit heteromorphism in the naturalization of Asteraceae. Annal Bot 123:1–10

    Google Scholar 

  • Gaba S, Chauvel B, Dessaint F, Bretagnolle V, Petit S (2010) Weed species richness in winter wheat increases with landscape heterogeneity. Agric Ecosyst Environ 138:318–323

    Google Scholar 

  • Galluzzi G, Eyzaguirre P, Negri V (2010) Home gardens: neglected hotspots of agro-biodiversity and cultural diversity. Biodivers Conserv 19(13):3635–3654

    Google Scholar 

  • Glemnitz M, Radics L, Hoffmann J, Czimber G (2006) Weed species richness and species composition of different arable field types—a comparative analysis along a climate gradient from south to north Europe. J Plant Dis Protect 20:577–586

    Google Scholar 

  • Godefroid S, Koedam N (2007) Urban plant species patterns are highly driven by density and function of built-up areas. Landsc Ecol 22:1227–1239

    Google Scholar 

  • Griffith DA, Peres-Neto PR (2006) Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses in exploiting relative location information. Ecology 87:2603–2613

    PubMed  Google Scholar 

  • Grime JP (1974) Vegetation classification by reference to strategies. Nature 250:26–31

    Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194

    Google Scholar 

  • Grime JP (2001) Plant strategies, vegetation processes and ecosystem properties, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Grime JP, Pierce S (2012) The evolutionary strategies that shape ecosystems. Wiley, Chichester

    Google Scholar 

  • Gritti ES, Smith B, Sykes MT (2006) Vulnerability of Mediterranean Basin ecosystems to climate change and invasion by exotic plant species. J Biogeogr 33:145–157

    Google Scholar 

  • Guerin GR, Martín-Forés I, Sparrow B et al (2018) The biodiversity impacts of non-native species should not be extrapolated from biased single-species studies. Biodivers Conserv 27(3):785–790

    Google Scholar 

  • Guo P, Yu F, Ren Y, Liu D, Li J, Ouyang Z, Wang X (2018) Response of ruderal species diversity to an urban environment: implications for conservation and management. Int J Environ Res Public Health 15(12):2832–2846

    PubMed Central  Google Scholar 

  • Halladay P, Gilmour DA (eds) (1995) Conserving Biodiversity outside protected areas. The role of traditional agro-ecosystems. IUCN, Gland, pp viii + 229

  • Heinrichs S, Pauchard A (2015) Struggling to maintain native plant diversity in a peri-urban reserve surrounded by a highly anthropogenic matrix. Biodivers Conserv 24:2769–2788

    Google Scholar 

  • Hulme PE, Bernard-Verdier M (2018) Comparing traits of native and alien plants: can we do better? Funct Ecol 32(1):117–125

    Google Scholar 

  • Hulme PE, Pyšek P, Jarošík V et al (2013) Bias and error in understanding plant invasion impacts. Trends Ecol Evol 28:212–218

    PubMed  Google Scholar 

  • IUCN (2019) The IUCN Red List of Threatened Species. Version 2019-1. http://www.iucnredlist.org

  • Jovanović S, Jakovljević K, Djordjević V, Vukojičić S (2013) Ruderal flora and vegetation of the town of Žabljak (Montenegro)—an overview for the period 1990–1998. Bot Serb 37(1):55–69

    Google Scholar 

  • Knapp S, Kühn I, Stolle J, Klotz S (2010) Changes in the functional composition of a Central European urban flora over three centuries. Perspect Plant Ecol Evol Syst 12(3):235–244

    Google Scholar 

  • Krigas N, Kokkini S (2004) A survey of the alien vascular flora of the urban and suburban area of Thessaloniki, N Greece. Willdenowia 34:81–99

    Google Scholar 

  • Kuebbing SE, Nuñez MA (2018) Current understanding of invasive species impacts cannot be ignored: potential publication biases do not invalidate findings. Biodivers Conserv 27:1545–1548

    Google Scholar 

  • Kühn I, Klotz S (2006) Urbanization and homogenization—comparing the floras of urban and rural areas in Germany. Biol Conserv 127(3):292–300

    Google Scholar 

  • Lloret F, Medail F, Brundu G, Hulme PE (2004) Local and regional abundance of exotic plant species on Mediterranean islands: are species traits important? Glob Ecol Biogeogr 13:37–45

    Google Scholar 

  • Lloret F, Médail F, Brundu G, Camarda I, Moragues E, Rita J, Lambdon P, Hulme PE (2005) Species attributes and invasion success by alien plants on Mediterranean islands. J Ecol 93:512–520

    Google Scholar 

  • Malavasi M, Santoro R, Cutini M, Acosta ATR, Carranza ML (2016) The impact of human pressure on landscape patterns and plant species richness in Mediterranean coastal dunes. Plant Biosyst 150(1):73–82

    Google Scholar 

  • Malkinson D, Kopel D, Wittenberg L (2018) From rural-urban gradients to patch—matrix frameworks: plant diversity patterns in urban landscapes. Landscape Urban Plann 169:260–268

    Google Scholar 

  • Marini L, Battisti A, Bona E, Federici G, Martini F, Pautasso M, Hulme PE (2012) Alien and native plant life-forms respond differently to human and climate pressures. Global Ecol Biogeogr 21:534–544

    Google Scholar 

  • Mayoral O, Mascia F, Podda L, Laguna E, Fraga P, Rita J, Frigau L, Bacchetta G (2018) Alien plant diversity in Mediterranean wetlands: a comparative study within Valencian, Balearic and Sardinian Floras. Not Bot Horti Agrobo 46(2):317–326

    Google Scholar 

  • McGill BJ, Dornelas M, Gotelli NJ, Magurran AE (2015) Fifteen forms of biodiversity trend in the Anthropocene. Trends Ecol Evol 30(2):104–113

    PubMed  Google Scholar 

  • Medvecká J, Kliment J, Májeková J, Halada Ľ, Zaliberová M, Gojdičová E, Feráková V, Jarolímek I (2012) Inventory of the alien flora of Slovakia. Preslia 84:257–309

    Google Scholar 

  • Mehraj G, Khuroo AA, Qureshi S et al (2018) Patterns of alien plant diversity in the urban landscapes of global biodiversity hotspots: a case study from the Himalayas. Biodivers Conserv 27:1055–1072

    Google Scholar 

  • Meyer S, Wesche K, Leuschner C, van Elsen T, Metzner J (2010) A new conservation strategy for arable weed vegetation in Germany: the project ‘100 fields for biodiversity’. Plant Breed Seed Sci 61:25–34

    Google Scholar 

  • Moustakas A, Voutsela A, Katsanevakis S (2018) Sampling alien species inside and outside protected areas: does it matter? Sci Total Environ 625:194–198

    CAS  PubMed  Google Scholar 

  • NCMA (2015) GMES/Copernicus Initial Operations (GIO) Land monitoring 2011–2013. Cadastre and Mapping Agency S.A. (NCMA), Athens, Greece. http://gis.ktimanet.gr/cachenascommon/corine.zip

  • Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I, Senior RA et al (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50

    CAS  PubMed  Google Scholar 

  • Newbold T, Hudson LN, Contu S, Hill SLL, Beck J et al (2018) Widespread winners and narrow-ranged losers: land use homogenizes biodiversity in local assemblages worldwide. PLoS Biol 16(12):e2006841

    PubMed  PubMed Central  Google Scholar 

  • Okimura T, Mori AS (2018) Functional and taxonomic perspectives for understanding the underlying mechanisms of native and alien plant distributions. Biodivers Conserv 27:1453–1469

    Google Scholar 

  • Okimura T, Koide D, Mori AS (2016) Differential processes underlying the roadside distributions of native and alien plant assemblages. Biodivers Conserv 25:995–1009

    Google Scholar 

  • Panitsa M, Tzanoudakis D (2001) Contribution to the study of the Greek flora: flora and phytogeography of Lipsos and Arki islet groups (East Aegean area, Greece). Folia Geobot 36:265–279

    Google Scholar 

  • Panitsa M, Snogerup B, Snogerup S, Tzanoudakis D (2003) Floristic investigation of Lemnos island (NE Aegean area, Greece). Willdenowia 33(1):79–105

    Google Scholar 

  • Panitsa M, Kagiampaki A, Kougioumoutzis K (2018): Plant diversity and biogeography of the Aegean Archipelago: a new synthesis. In: Sfenthourakis, S et al (Eds), Biogeography and biodiversity of the Aegean. In honour of prof. Moysis Mylonas, Broken Hill Publishers Ltd, Nicosia, Cyprus, pp 223–244

  • Paradis E, Schliep K (2019) ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35:526–528

    CAS  PubMed  Google Scholar 

  • Pearman PB, Weber D (2007) Common species determine richness patterns in biodiversity indicator taxa. Biol Conserv 138(1–2):109–119

    Google Scholar 

  • Phitos D, Konstantinidis T, Kamari G (2009) The red data book of rare and threatened plants of Greece, 2nd edn. Hellenic Botanical Society, Patras

    Google Scholar 

  • Pierce S, Negreiros D, Cerabolini BE et al (2017) A global method for calculating plant CSR ecological strategies applied across biomes world-wide. Funct Ecol 31:444–457

    Google Scholar 

  • Podda L, Fraga I, Arguimbau P, Mascia F, Mayoral García-Berlanga O, Bacchetta G (2011) Comparison of the invasive alien flora in continental islands: sardinia (Italy) and Balearic Islands (Spain). Rendiconti Lincei. Scienze Fisiche e Naturali 22(1):31–45

    Google Scholar 

  • Pyšek P (1998) Alien and native species in Central European urban floras: a quantitative comparison. J Biogeogr 25:155–163

    Google Scholar 

  • Pyšek P, Lambdon PW, Arianoutsou M, Kühn I, Pino J, Winter M (2009) Alien vascular plants of Europe. In: DAISIE (ed) Handbook of alien species in Europe. Springer, Dordrecht, pp 43–61

    Google Scholar 

  • Pyšek P, Pergl J, Essl F, Lenzner B, Dawson W, Kreft H, Weigelt P, Winter M, Kartesz J, Nishino M, Antonova LA, Barcelona JF, Cabezas FJ, Cárdenas D, Cárdenas-Toro J, Castańo N, Chacón E, Chatelain C, Dullinger S, Ebel AL, Figueiredo E, Fuentes N, Genovesi P, Groom QJ, Henderson L, Inderjit Kupriyanov A, Masciadri S, Maurel N, Meerman J, MorozovaO Moser D, Nickrent D, Nowak PM, Pagad S, Patzelt A, Pelser PB, Seebens H, Shu W, Thomas J, Velayos M, Weber E, Wieringa JJ, Baptiste MP, van Kleunen M (2017) Naturalized alien flora of the world: species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia 89:203–274

    Google Scholar 

  • QGIS Development Team (2018) QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org

  • Rat MM, Gavrilović MT, Radak BD et al (2017) Urban flora in the Southeast Europe and its correlation with urbanization. Urban Ecosyst 20:811–822

    Google Scholar 

  • Rendeková A, Mičieta K (2017) Changes in the representation of alien taxa in ruderal vegetation of an urban ecosystem over 50 years. A case study from Malacky city, Slovakia, Central Europe. Urban Ecosyst 20:867–875

    Google Scholar 

  • Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107

    Google Scholar 

  • Rotchés-Ribalta R, Blanco-Moreno JM, Armengot L, José-María L, Sans FX (2015) Which conditions determine the presence of rare weeds in arable fields? Agric Ecosyst Environ 203:55–61

    Google Scholar 

  • Salinitro M, Alessandrini A, Zappi A, Melucci D, Tassoni A (2018) Floristic diversity in different urban ecological niches of a southern European city. Sci Rep UK 8:2045–2322

    Google Scholar 

  • Sánchez Martín R, Jiménez MN, Navarro FB (2018) Effects of vegetation management on plant diversity in traditional irrigation systems. J Environ Manag 223:396–402

    Google Scholar 

  • Solé-Senan XO, Juárez-EscarioA Conesa JA, Torra J, Royo-Esnal A, Recasens J (2014) Plant diversity in Mediterranean cereal fields: unraveling the effect of landscape complexity on rare arable plants. Agric Ecosyst Environ 185:221–230

    Google Scholar 

  • Statsoft.com (2016) STATISTICA. New Features in STATISTICA 12. [online]. http://www.statsoft.com/Products/STATISTICA-Features/Version-12. Accessed 18 Mar 2016

  • Storkey J, Neve P (2018) What good is weed diversity? Weed Res 58:239–243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Storkey J, Meyer S, Still KS, Leuschner C (2012) The impact of agricultural intensification and land-use change on the European arable flora. P R Soc B 279:1421–1429

    CAS  Google Scholar 

  • Strid A (2000) The Flora Hellenica database. Port Acta Biol 19:49–59

    Google Scholar 

  • Strid A, Tan K (1997) Flora Hellenica Volume 1, Koeltz Scientific Books

  • Turland NJ, Boyce P (2011) Arum purpureospathum. The IUCN Red List of Threatened Species 2011

  • Turland NJ, Phitos D, Kamari G, Bareka P (2004) Weeds of the traditional agriculture of Crete. Willdenowia 34:381–406

    Google Scholar 

  • Vlami V, Kokkoris IP, Zogaris S, Cartalis C, Kehayias G, Dimopoulos P (2017) Cultural landscapes and attributes of “culturalness” in protected areas: an exploratory assessment in Greece. Sci Total Environ 595:229–243

    CAS  PubMed  Google Scholar 

  • Wagner V, Chytrý M, Jiménez-Alfaro B, Prergl J, Hennekens S, Biurrun I et al (2017) Alien plant invasions in European woodlands. Divers Distrib 23:969–981

    Google Scholar 

  • Wesche K, Krause B, Culmsee H, Leuschner C (2012) Fifty years of change in Central European grassland vegetation: large losses in species richness and animal-pollinated plants. Biol Conserv 150(1):76–85

    Google Scholar 

  • Winter M, Schweiger O, Klotz S, Nentwig W, Andriopoulos P, Arianoutsou M, Basnou C, Delipetrou P, Didžiulis V, Hejda M, Hulme PE, Lambdon PW, Pergl J, Pyšek P, Roy DB, Kühn I (2009) Plant extinctions and introductions lead to phylogenetic and taxonomic homogenization of the European flora. Proc Natl Acad Sci USA 106:21721–21725

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Panitsa.

Additional information

Communicated by Daniel Sanchez Mata.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panitsa, M., Iliadou, E., Kokkoris, I. et al. Distribution patterns of ruderal plant diversity in Greece. Biodivers Conserv 29, 869–891 (2020). https://doi.org/10.1007/s10531-019-01915-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-019-01915-4

Keywords

Navigation