Skip to main content

Advertisement

Log in

Microstructure Evolution and Compressive Properties of Multilayered Al/Ni Energetic Structural Materials under Different Strain Rates

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Multilayered Al/Ni energetic structural materials integrating exothermic properties and mechanical properties were prepared by the method of electrodeposition and hot pressing in this research. Then, the uniaxial quasi-static compression and split Hopkinson pressure bar experiments were conducted at strain rates from 10−4 to 6.5 × 103 s−1 at room temperature. The effects of compression strain rate on the microstructure evolution and the compressive properties of multilayered Al/Ni energetic structural materials were systematically investigated. With increasing quasi-static compression strain rate, the compression strength increased slightly for two kinds of Al/Ni multilayers prepared under different hot pressing time. With the hot pressing process extending to 4 h, the dynamic compression strength of multilayered Al/Ni composites monotonically increased from 494.7 to 564.2 MPa with increasing strain rate. It was shown that Al/Ni energetic structural materials exhibited evident strain hardening and strain rate strengthening. However, when the compression strain rate reached 6500 s−1, the Al/Ni composite prepared with the hot pressing time of 1 h showed prominent thermal softening. Notwithstanding, it was found that the compression strength of Al/Ni composite prepared at 4 h was evidently higher than that at 1 h, since the second phase reinforcement counteracted the thermal softening. In addition, the critical failure strain presented obviously increasing tendency with the increased compression strain rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L. Wang, J. Liu, S. Li, and X. Zhang, Investigation on Reaction Energy, Mechanical Behavior and Impact Insensitivity of W-PTFE-Al Composites with Different W Percentage, Mater. Des., 2016, 92, p 397–404

    Article  CAS  Google Scholar 

  2. R.V. Reeves, A.S. Mukasyan, and S.F. Son, Thermal and Impact Reaction Initiation in Ni/Al Heterogeneous Reactive Systems, J. Phys. Chem. C, 2010, 114(35), p 14772–14780

    Article  CAS  Google Scholar 

  3. L. Qiao, X.F. Zhang, Y. He, X.N. Zhao, and Z.W. Guan, Multiscale Modelling on the Shock-Induced Chemical Reactions of Multifunctional Energetic Structural Materials, J. Appl. Phys., 2013, 113(17), p 173513

    Article  Google Scholar 

  4. X.F. Zhang, J. Zhang, L. Qiao, A.S. Shi, Y.G. Zhang, Y. He, and Z.W. Guan, Experimental Study of the Compression Properties of Al/W/PTFE Granular Composites under Elevated Strain Rates, Mater. Sci. Eng., A, 2013, 581(10), p 48–55

    Article  CAS  Google Scholar 

  5. H. Ren, X. Liu, and J. Ning, Impact-Initiated Behavior and Reaction Mechanism of W/Zr Composites with SHPB Setup, AIP Adv., 2016, 6(11), p 115205

    Article  Google Scholar 

  6. Q. Wu, Q.M. Zhang, R.R. Long, K. Zhang, and J. Guo, Potential Space Debris Shield Structure Using Impact-Initiated Energetic Materials Composed of Polytetrafluoroethylene and Aluminum, Appl. Phys. Lett., 2016, 108(10), p 101903

    Article  Google Scholar 

  7. D.B. Nielson, B.N. Ashcroft, and D.W. Doll, Reactive Material Compositions and Projectiles Containing Same, U. S. Patent No. 8568541, 2013

  8. G.D. Hugus, E.W. Sheridan, and G.W. Brooks, Structural Metallic Binders for Reactive Fragmentation Weapons, U.S. Patent No. 8250985, 2012

  9. P. Church, R. Claridge, P. Ottley, I. Lewtas, N. Harrison, P. Gould, C. Braithwaite, and D. Williamson, Investigation of a Nickel–Aluminum Reactive Shaped Charge Liner, J. Appl. Mech., 2013, 80, p 031701

    Article  Google Scholar 

  10. C.T. Wei, E. Vitali, F. Jiang, S.W. Du, D.J. Benson, K.S. Vecchio, N.N. Thadhani, and M.A. Meyers, Quasi-Static and Dynamic Response of Explosively Consolidated Metal–Aluminum Powder Mixtures, Acta Mater., 2012, 60(3), p 1418–1432

    Article  CAS  Google Scholar 

  11. H. Zhao, C. Tan, X. Yu, X. Ning, Z. Nie, H. Cai, F. Wang, and Y. Cui, Enhanced Reactivity of Ni-Al Reactive Material Formed by Cold Spraying Combined with Cold-Pack Rolling, J. Alloys Compd., 2018, 741, p 883–894

    Article  CAS  Google Scholar 

  12. S.W. Kuk, J. Yu, and H.J. Ryu, Stationary Self-propagation Combustion with Variations in the Total Layer Thickness of Compression-Bonded Ni-Sputtered Al Foil Multilayers, J. Alloys Compd., 2015, 626, p 16–19

    Article  CAS  Google Scholar 

  13. W. Xiong, X. Zhang, Y. Wu, Y. He, C. Wang, and L. Guo, Influence of Additives on Microstructures, Mechanical Properties and Shock-Induced Reaction Characteristics of Al/Ni Composites, J. Alloys Compd., 2015, 648, p 540–549

    Article  CAS  Google Scholar 

  14. S. Simoes, A.S. Ramos, F. Viana, O. Emadinia, M.T. Vieira, and M.F. Vieira, Ni/Al Multilayers Produced by Accumulative Roll Bonding and Sputtering, J. Mater. Eng. Perform., 2016, 25(10), p 4394–4401

    Article  CAS  Google Scholar 

  15. C. Ji, Y. He, C.T. Wang, Y. He, X. Pan, J. Jiao, and L. Guo, Investigation on Shock-Induced Reaction Characteristics of an Al/Ni Composite Processed via Accumulative Roll-Bonding, Mater. Des., 2017, 116, p 591–598

    Article  CAS  Google Scholar 

  16. L. Battezzati, C. Antonione, and F. Fracchia, Ni-Al Intermetallics Produced by Cold-Rolling Elemental Sheets, Intermetallics, 1995, 3(1), p 67–71

    Article  CAS  Google Scholar 

  17. A. Mozaffari, H.D. Manesh, and K. Janghorban, Evaluation of Mechanical Properties and Structure of Multilayered Al/Ni Composites Produced by Accumulative Roll Bonding (ARB) Process, J. Alloys Compd., 2010, 489, p 103–109

    Article  CAS  Google Scholar 

  18. D. Spitzer, M. Comet, C. Baras, V. Pichot, and N. Piazzon, Energetic Nano-Materials: Opportunities for Enhanced Performances, J. Phys. Chem. Solids, 2010, 71(2), p 100–108

    Article  CAS  Google Scholar 

  19. E.M. Hunt, S. Malcolm, M.L. Pantoya, and F. Davis, Impact Ignition of Nano and Micron Composite Energetic Materials, Int. J. Impact Eng, 2009, 36(6), p 842–846

    Article  Google Scholar 

  20. H. Ren, X. Liu, and J. Ning, Microstructure and Mechanical Properties of W-Zr Reactive Materials, Mater. Sci. Eng., A, 2016, 660, p 205–212

    Article  CAS  Google Scholar 

  21. F.Y. Xu, S.B. Liu, Y.F. Zheng, Q.B. Yu, and H.F. Wang, Quasi-Static Compression Properties and Failure of PTFE/Al/W Reactive Materials, Adv. Eng. Mater., 2017, 19(1), p 1–7

    Article  Google Scholar 

  22. M.N. Raftenberg, W. Mock, and G.C. Kirby, Modeling the Impact Deformation of Rods of a Pressed PTFE/Al Composite Mixture, Int. J. Impact Eng, 2008, 35(12), p 1735–1744

    Article  Google Scholar 

  23. S.W. Kuk, J. Yu, and H.J. Ryu, Effects of Interfacial Al Oxide Layers: Control of Reaction Behavior in Micrometer-Scale Al/Ni Multilayers, Mater. Des., 2015, 84, p 372–377

    Article  CAS  Google Scholar 

  24. J. Huang, X. Fang, S. Wu, L. Yang, Z. Yu, and Y. Li, Mechanical Response and Shear-Induced Initiation Properties of PTFE/Al/MoO3 Reactive Composites, Materials, 2018, 11(7), p 1200

    Article  Google Scholar 

  25. E.B. Herbold, J.L. Jordan, and N.N. Thadhani, Effects of Processing and Powder Size on Microstructure and Reactivity in Arrested Reactive Milled Al + Ni, Acta Mater., 2011, 59(17), p 6717–6728

    Article  CAS  Google Scholar 

  26. B. Feng, X. Fang, Y.C. Li, S.Z. Wu, Y.M. Mao, and H.X. Wang, Influence of Processing Techniques on Mechanical Properties and Impact Initiation of an Al-PTFE Reactive Material, Cent. Eur. J. Energ. Mater., 2016, 13(4), p 989–1004

    Article  CAS  Google Scholar 

  27. E.B. Herbold, V.F. Nesterenko, D.J. Benson, J. Cai, K.S. Vecchio, F. Jiang, J.W. Addiss, S.M. Walley, and W.G. Proud, Particle Size Effect on Strength, Failure, and Shock Behavior in Polytetrafluoroethylene-Al-W Granular Composite Materials, J. Appl. Phys., 2008, 104(10), p 103903

    Article  Google Scholar 

  28. C. Ge, W. Maimaitituersun, Y. Dong, and C. Tian, A Study on the Mechanical Properties and Impact-Induced Initiation Characteristics of Brittle PTFE/Al/W Reactive Materials, Materials, 2017, 10(5), p 452

    Article  Google Scholar 

  29. H. Wang, Y. Li, B. Feng, J. Huang, S. Zhang, and X. Fang, Compressive Properties of PTFE/Al/Ni Composite Under Uniaxial Loading, J. Mater. Eng. Perform., 2017, 26(5), p 2331–2336

    Article  CAS  Google Scholar 

  30. S. Sen, M. Lake, J. Wilden, and P. Schaaf, Synthesis and Characterization of Ti/Al Reactive Multilayer Films with Various Molar Ratios, Thin Solid Films, 2017, 631, p 99–105

    Article  CAS  Google Scholar 

  31. V.C. Srivastava, T. Singh, S. Ghosh Chowdhury, and V. Jindal, Microstructural Characteristics of Accumulative Roll-Bonded Ni-Al-Based Metal–Intermetallic Laminate Composite, J. Mater. Eng. Perform., 2012, 21(9), p 1912–1918

    Article  CAS  Google Scholar 

  32. W. Xiong, X.F. Zhang, L. Zheng, K. Bao, H.H. Chen, and Z.W. Guan, The Shock-Induced Chemical Reaction Behaviour of Al/Ni Composites by Cold Rolling and Powder Compaction, J. Mater. Sci., 2019, 54(8), p 6651–6667

    Article  CAS  Google Scholar 

  33. Z. Zhang, H. Zhang, Y. Tang, L. Zhu, Y. Ye, S. Li, and S. Bai, Microstructure, Mechanical Properties and Energetic Characteristics of a Novel High-Entropy Alloy HfZrTiTa0.53, Mater. Des., 2017, 133, p 435–443

    Article  CAS  Google Scholar 

  34. D. Gao, C. Guo, F. Jiang, and G. Chen, The Dynamic Compressive Behavior of Wf/Zr-Based Metallic Glass Composites, Mater. Sci. Eng., A, 2015, 641, p 107–115

    Article  CAS  Google Scholar 

  35. M. Wang, L. Qiu, X. Zhao, Y. Li, T. Rao, S. He, L. Qin, and J. Tao, Multilayered Al/Ni Energetic Structural Materials with High Energy Density and Mechanical Properties Prepared by a Facile Approach of Electrodeposition and Hot Pressing, Mater. Sci. Eng., A, 2019, 757, p 23–31

    Article  CAS  Google Scholar 

  36. X. Yang, H. Yang, and S. Zhang, Rate-Dependent Constitutive Models of S690 High-Strength Structural Steel, Constr. Build. Mater., 2019, 198, p 597–607

    Article  Google Scholar 

  37. F. Jiang and K.S. Vecchio, Hopkinson Bar Loaded Fracture Experimental Technique: A Critical Review of Dynamic Fracture Toughness Tests, Appl. Mech. Rev., 2009, 62, p 060802

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51475231) and the Funding of Jiangsu Innovation Program for Graduate Education (No. KYLX16_0348).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Tao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Li, J., Zhang, J. et al. Microstructure Evolution and Compressive Properties of Multilayered Al/Ni Energetic Structural Materials under Different Strain Rates. J. of Materi Eng and Perform 29, 506–514 (2020). https://doi.org/10.1007/s11665-020-04589-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04589-0

Keywords

Navigation