Skip to main content
Log in

Ductile–Brittle Variation Phenomenon and a Special Transformation-Induced Plasticity Effect in NbTi-NiTi Composite

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In order to study the transformation-induced plasticity (TRIP) effect in a NiTi shape-memory alloy composite, an in situ NbTi-NiTi composite was prepared by vacuum arc melting, hot forging and wire drawing. An unusual ductile–brittle variation phenomenon was observed by means of a series of tensile tests. The composite was brittle in the absence of transformation at 200 °C, and the fracture strain was about 2%. With lowering the tensile temperature, the composite became ductile when stress-induced martensitic transformation occurred, and the elongation increased to about 18% (a ninefold increase) during tensile test at room temperature. This ductile–brittle variation phenomenon indicates that the stress-induced martensitic transformation of NiTi alloy helps to improve the ductility of the composite, which is just the exhibition of TRIP effect in the NbTi-NiTi composite. Different from conventional TRIP steels, the TRIP behavior in NiTi induces only an increase in the elongation, but not any increase in fracture strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. Tsuchida and Y. Tomota, A Micromechanic Modeling for Transformation Induced Plasticity in Steels, Mater. Sci. Eng. A, 2000, 285(1-2), p 346-352

    Article  Google Scholar 

  2. F.D. Fischer, G. Reisner, E. Werner, K. Tanaka, G. Gailletaud, and T. Antretter, A New View on Transformation Induced Plasticity (TRIP), Int. J. Plast., 2000, 16(7-8), p 723-748

    Article  CAS  Google Scholar 

  3. L. Taleb and F. Sidoroff, A Micromechanical Modeling of the Greenwood–Johnson Mechanism in Transformation Induced Plasticity, Int. J. Plast., 2003, 19, p 1821-1842

    Article  CAS  Google Scholar 

  4. P. Jacques, Q. Furnemont, T. Pardoen, and F. Delannay, On the Role of Martensitic Transformation on Damage and Cracking Resistance in TRIP-Assisted Multiphase Steels, Acta Mater., 2001, 49(1), p 139-152

    Article  CAS  Google Scholar 

  5. S. Chatterjee and H.K.D.H. Bhadeshia, TRIP-Assisted Steels: Cracking of High-Carbon Martensite, Mater. Sci. Technol., 2006, 22(6), p 645-649

    Article  CAS  Google Scholar 

  6. C.G. Lee, S.J. Kim, T.H. Kim, and S. Lee, Effects of Volume Fraction and Stability of Retained Austenite on Formability in a 0.1C-1.5Si-1.5Mn-0.5Cu TRIP-Aided Cold-Rolled Steel Sheet, Mater. Sci. Eng. A, 2004, 371(1-2), p 16-23

    Article  Google Scholar 

  7. K. Otsuka and X.B. Ren, Physical Metallurgy of Ti-Ni-Based Shape Memory Alloys, Prog. Mater. Sci., 2005, 50(5), p 511-678

    Article  CAS  Google Scholar 

  8. Y.C. Park, G.C. Lee, and Y. Furuya, A Study on the Fabrication of NiTi/Al6061 Shape Memory Composite Material by Hot-Press Method and its Mechanical Property, Mater. Trans., 2004, 45(2), p 264-271

    Article  CAS  Google Scholar 

  9. K. Mizuuchi, K. Inoue, and K. Hamada, Processing of NiTi SMA Fiber Reinforced AZ31 Mg Alloy Matrix Composite by Pulsed Current Hot Pressing, Mater. Sci. Eng. A, 2004, 367(1-2), p 343-349

    Article  Google Scholar 

  10. B.K. Jang and T. Kishi, Adhesive Strength Between NiTi Fibers Embedded in CFRP Composites, Mater. Lett., 2005, 59(11), p 1338-1341

    Article  CAS  Google Scholar 

  11. Y.J. Zheng, L.S. Cui, Y. Li, and R. Stalmans, Partial Transformation Behavior of Prestrained TiNi Fibers in Composites, Mater. Lett., 2001, 51(5), p 425-428

    Article  CAS  Google Scholar 

  12. Y.J. Zheng, J. Schrooten, L.S. Cui, and J.V. Humbeeck, Constrained Thermoelastic Martensitic Transformation Studied by Modulated DSC, Acta Mater., 2003, 51(18), p 5467-5475

    Article  CAS  Google Scholar 

  13. Y. Li, L.S. Cui, Y.J. Zheng, and D.Z. Yang, DSC Study of the Reverse Martensitic Transformation in Prestrained TiNi Shape Memory Alloy in Different Composites, Mater. Lett., 2001, 51(1), p 73-77

    Article  CAS  Google Scholar 

  14. K.A. Tsoi, J. Schrooten, and R. Stalmans, Transformational Behaviour of Constrained Shape Memory Alloys, Acta Mater., 2002, 50(14), p 3535-3544

    Article  CAS  Google Scholar 

  15. Y.J. Zheng, J. Schrooten, K.A. Tsoi, and R. Stalmans, Thermal Response of Glass Fibre/Epoxy Composites with Embedded TiNiCu Alloy Wires, Mater. Sci. Eng. A, 2002, 335(1–2), p 157–163

    Article  Google Scholar 

  16. Y. Xu, K. Otsuka, H. Nagai, H. Yoshida, M. Asai, and T. Kishi, A SMA/CFRP Hybrid Composite with Damage Suppression Effect at Ambient Temperature, Scr. Mater., 2003, 49(6), p 587–593

    Article  CAS  Google Scholar 

  17. Y.J. Zheng, L.S. Cui, and J. Schrooten, Basic Design Guidelines for SMA-Epoxy Smart Composites, Mater. Sci. Eng. A, 2005, 390(1–2), p 139–143

    Article  Google Scholar 

  18. Y. Shao, K.Y. Yu, D.Q. Jiang, C. Yu, Y. Ren, X.H. Jiang, F.M. Guo, and L.S. Cui, High Strength W/TiNi Micro-Laminated Composite with Transformation-Mediated Ductility, Mater. Des., 2016, 106, p 415–419

    Article  CAS  Google Scholar 

  19. J. Zhang, Y. Liu, Y. Ren, Y. Huan, S. Hao, C. Yu, Y. Shao, Y. Ru, D. Jiang, and L. Cui, In situ Synchrotron X-ray Diffraction Study of Deformation Behavior and Load Transfer in a Ti2Ni-NiTi Composite, Appl. Phys. Lett., 2014, 105(4), p 041910-1–041910-4

    Google Scholar 

  20. D. Jiang, S. Hao, J. Zhang, Y. Liu, Y. Ren, and L. Cui, In situ Synchrotron Investigation of the Deformation Behavior of Nanolamellar Ti5Si3/TiNi Composite, Scr. Mater., 2014, 78–79, p 53–56

    Article  Google Scholar 

  21. Z.Y. Liu, L.S. Cui, Y.N. Liu, D.Q. Jiang, J. Jiang, X.B. Shi, Y. Shao, and Y.J. Zheng, Influence of Internal Stress Coupling on the Deformation Behavior of NiTi-Nb Nanowire Composites, Scr. Mater., 2014, 77, p 75–78

    Article  CAS  Google Scholar 

  22. S.J. Hao, L.S. Cui, D.Q. Jiang, C. Yu, J. Jiang, X.B. Shi, Z.Y. Liu, S. Wang, Y.D. Wang, D.E. Brown, and Y. Ren, Nanostructured Nb Reinforced NiTi Shape Memory Alloy Composite with High Strength and Narrow Hysteresis, Appl. Phys. Lett., 2013, 102, p 2319051–2319054

    Google Scholar 

  23. D.Q. Jiang, J. Jiang, X.B. Shi, X.H. Jiang, S.J. Jiao, and L.S. Cui, Constrained Martensitic Transformation in Nanocrystalline NiTi/NbTi Shape Memory Composites, J. Alloys Compd., 2013, 577(15), p S749–S751

    Article  CAS  Google Scholar 

  24. S.J. Hao, L.S. Cui, D.Q. Jiang, X.D. Han, Y. Ren, J. Jiang, Y.N. Liu, Z.Y. Liu, S.C. Mao, Y.D. Wang, Y. Li, X.B. Ren, X.D. Ding, S. Wang, C. Yu, X.B. Shi, M.S. Du, F. Yang, Y.J. Zhang, Z. Zhang, X.D. Li, D.E. Brown, and J. Li, A Transforming Metal Nanocomposite with Large Elastic Strain, Low Modulus, and High Strength, Science, 2013, 339, p 1191–1194

    Article  CAS  Google Scholar 

  25. J. Jiang, L.S. Cui, Y.J. Zheng, and T.Y. Xing, Effect of Pre-deformation on Damping Capacity of NiTi/NbTi Composite, Int. J. Mod. Phys. B, 2010, 24, p 2392–2397

    Article  CAS  Google Scholar 

  26. J. Jiang, L.S. Cui, Y.J. Zheng, D.Q. Jiang, Z.Y. Liu, and K. Zhao, Narrow Hysteresis Behavior of NiTi Shape Memory Alloy Constrained by NbTi Matrix During Incomplete Transformation, Mater. Sci. Eng. A, 2012, 536, p 33–36

    Article  CAS  Google Scholar 

  27. J. Jiang, L.S. Cui, Y.J. Zheng, D.Q. Jiang, Z.Y. Liu, and K. Zhao, Negative Thermal Expansion Arrest Point Memory Effect in NiTi Shape Memory Alloy and NbTi/NiTi Composite, Mater. Sci. Eng. A, 2012, 549, p 114–117

    Article  CAS  Google Scholar 

  28. J. Jiang, D.Q. Jiang, S.H. Hao, C. Yu, J.S. Zhang, Y. Ren, D.P. Lu, S.F. Xie, and L.S. Cui, A Nano Lamella NbTi-NiTi Composite with High Strength, Mater. Sci. Eng. A, 2015, 633, p 121–124

    Article  CAS  Google Scholar 

  29. M. Piao, S. Miyazaki, K. Otsuka, and N. Nishida, Effects of Nb Addition on the Microstructure of Ti-Ni Alloys, Mater. Trans. JIM, 1992, 33(4), p 337–345

    Article  CAS  Google Scholar 

  30. H.L. Yang, J. Chen, Y. Li, X.B. Shi, Y.T. Li, and J.S. Zhang, Effect of Cold Work on Martensitic Transformation of Ni38Ti37V25 Alloy Reinforced by V Nanowires, J. Alloys Compd., 2020, 815, p 152489

    Article  CAS  Google Scholar 

  31. X. Shi, H. Yang, H. Mao et al., Effect of Plastic Deformation of V Nanowires on the Transformation Characteristics of NiTiV Alloys, Mater. Sci. Eng. A, 2018, 735, p 162–165

    Article  CAS  Google Scholar 

  32. H. Mao, H. Yang, X. Shi et al., Transformation and Superelastic Characteristics of Large Hysteresis TiNi Matrix Shape Memory Alloys Reinforced by V Nano-wires, Mater. Lett., 2018, 228, p 391–394

    Article  CAS  Google Scholar 

  33. M.Z. Guan, X.Z. Wang, and Y.H. Zhou, Cyogenic Temperature Dependence of Tensile Response of NbTi/Cu Superconducting Composite Wires, IEEE Trans. Appl. Supercond., 2012, 22(6), p 8401106

    Article  Google Scholar 

  34. Y. Furuya, Design and Material Evaluation of Shape Memory Composites, J Intell. Mater. Syst. Struct., 1996, 7, p 321–330

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by the Key Program of the National Science Foundation of China (NSFC) (Grant No. 51731010), National Natural Science Foundation of China (Grant Nos. 51571212 and 51861011), Jiangxi Natural Science Foundation (Grant No. 20171ACB21068), and Science Foundation of China University of Petroleum, Beijing (Grant No. 2462018BJC005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lishan Cui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Jiang, D., Hao, S. et al. Ductile–Brittle Variation Phenomenon and a Special Transformation-Induced Plasticity Effect in NbTi-NiTi Composite. J. of Materi Eng and Perform 29, 296–302 (2020). https://doi.org/10.1007/s11665-020-04591-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04591-6

Keywords

Navigation