Skip to main content
Log in

Etching Kinetics and Surface Conditions for KNbxOy Thin Films with Fluorine- and Chlorine-Based Plasma Chemistries

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The investigation of etching kinetics and surface conditions for KNbxOy thin films in CF4 + Ar and Cl2 + Ar inductively coupled plasmas was carried out. The variable processing parameters were Ar content in a feed gas (0–75% Ar), gas pressure (4–10 mTorr) and input power (400–700 W) at constant bias power of 100 W. The combination of plasma diagnostics by Langmuir probes and plasma modeling provided the data on internal plasma parameters, gas-phase chemistry and steady-state densities of plasma active species. The compositional changes of the etched surfaces were investigated using X-ray photoelectron spectroscopy (XPS). It was found that the fluorine-based etching chemistry provides the much lower halogen atom flux together with the much higher KNbxOy etching rate under the condition of quite close ion momentum fluxes in both gas systems. The correlations between measured etching rates and model-predicted fluxes of active species suggested the neutral-flux-limited etching regime with the much lower effective reaction probability between KNbxOy and Cl atoms. The last effect may be related to lower volatility of NbClx compared with NbFx (that is confirmed by XPS data) as well as to the higher energy threshold for KNbxOy + Cl reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zheng Q, Zhang H, Shi B, Xue X, Liu Z, Jin Y, Ma T, Zou Y, Wang X, An Z, Tang W, Zhang W, Yang F, Liu Y, Lang X, Xu Z, Li Z, Wnag ZL (2016) In vivo self-powered wireless cardiac monitoring via implantable triboelectric nanogenerator. ACS Nano 10:6510

    Article  CAS  Google Scholar 

  2. Priya S (2010) Criterion for material selection in design of bulk piezoelectric energy harvesters. IEEE Trans Ultrason Ferroelectr Freq Control 57:2610

    Article  Google Scholar 

  3. Niu X, Jia W, Qian S, Zhu J, Zhang J, Hou X, Mu J, Mu J, Geng W, Cho J, He J, Chou X (2019) High-performance PZT-based stretchable piezoelectric nanogenerator. ACS Sustain Chem Eng 7:979

    Article  CAS  Google Scholar 

  4. Xu S, Yeh Y-W, Poirier G, McAlpine MC, Register RA, Yao N (2013) Flexible piezoelectric PMN-PT nanowire-based nanocomposite and device. Nano Lett 13:2393

    Article  CAS  Google Scholar 

  5. Kim BY, Seo IT, Lee YS, Kim JS, Nahm S, Kang C-Y, Yoon S-J, Paik J-H, Jeong Y-H (2015) High-performance (Na0.5K0.5)NbO3 thin film piezoelectric energy harvester. J Am Ceram Soc 98:119

    Article  CAS  Google Scholar 

  6. Zhang B, Wu J, Cheng X, Wang X, Xiao D, Zhu J, Wang X, Lou X (2013) Lead-free piezoelectrics based on potassium-sodium niobate with giant d33. ACS Appl Mater Interfaces 5:7718

    Article  CAS  Google Scholar 

  7. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) High performance lead-free piezoelectric material. Nature 432:84

    Article  CAS  Google Scholar 

  8. Birol H, Damjanovic D, Setter N (2005) Preparation and characterization of KNbO3 ceramics. J Am Ceram Soc 88:1754

    Article  CAS  Google Scholar 

  9. Wang G, Selbach SM, Yu Y, Zhang X, Hrande T, Einarsrud M-A (2009) Hydrothermal synthesis and characterization of KNbO3 nanorods. CrystEngComm 11:1958

    Article  CAS  Google Scholar 

  10. Kim D-H, Joung M-R, Seo I-T, Hur J, Kim J-H, Kim B-Y, Lee H-J, Nahm S (2014) Influence of sintering conditions on piezoelectric properties of KNbO3 ceramics. J Eur Ceram Soc 34:4193

    Article  CAS  Google Scholar 

  11. Son J, Efremov A, Yun SJ, Yeom GY, Kwon K-H (2014) Etching characteristics and mechanism of SiNx films for nano-devices in CH2F2/O2/Ar inductively coupled plasma: effect of O2 mixing ratio. J Nanosci Nanotechnol 14:9534

    Article  CAS  Google Scholar 

  12. Efremov A, Lee J, Kwon K-H (2017) A comparative study of CF4, Cl2 and HBr + Ar inductively coupled plasmas for dry etching applications. Thin Solid Films 629:39

    Article  CAS  Google Scholar 

  13. Sugavara M (1998) Plasma etching: fundamentals and applications. Oxford University Press, New York

    Google Scholar 

  14. Efremov A, Min N-K, Choi B-G, Baek K-H, Kwon K-H (2008) Model-based analysis of plasma parameters and active species kinetics in Cl2/X (X = Ar, He, N2) inductively coupled plasmas. J Electrochem Soc 155:D777

    Article  CAS  Google Scholar 

  15. Lim N, Efremov A, Kwon K-H (2019) Gas-phase chemistry and etching mechanism of SiNx thin films in C4F8 + Ar inductively coupled plasma. Thin Solid Films 685:97

    Article  CAS  Google Scholar 

  16. Chun I, Efremov A, Yeom GY, Kwon K-H (2015) A comparative study of CF4/O2/Ar and C4F8/O2/Ar plasmas for dry etching applications. Thin Solid Films 579:136

    Article  CAS  Google Scholar 

  17. Efremov AM, Murin DB, Kwon KH (2018) Parameters of plasma and kinetics of active particles in CF4(CHF3) + Ar mixtures of a variable initial composition. Russ Microlectron 47:371

    Article  CAS  Google Scholar 

  18. Efremov AM, Kim D-P, Kim C-I (2004) Effect of gas mixing ratio on gas-phase composition and etch rate in an inductively coupled CF4/Ar plasma. Vacuum 75:133

    Article  CAS  Google Scholar 

  19. Efremov AM, Kim G-H, Kim J-G, Bogomolov AV, Kim C-I (2007) Applicability of self-consistent global model for characterization of inductively coupled Cl2 plasma. Vacuum 81:669

    Article  CAS  Google Scholar 

  20. Hsu C-C, Nierode MA, Coburn JW, Graves DB (2006) Comparison of model and experiment for Ar, Ar/O2 and Ar/O2/Cl2 inductively coupled plasmas. J Phys D Appl Phys 39:3272

    Article  CAS  Google Scholar 

  21. Gray DC, Tepermeister I, Sawin HH (1993) Phenomenological modeling of ion enhanced surface kinetics in fluorine-based plasma etching. J Vac Sci Technol B 11:1243

    Article  CAS  Google Scholar 

  22. Lee C, Graves DB, Lieberman MA (1996) Role of etch products in polysilicon etching in a high-density chlorine discharge. Plasma Chem Plasma Proc 16:99

    Article  CAS  Google Scholar 

  23. Chistophorou LG, Olthoff JK (2004) Fundamental electron interactions with plasma processing gases. Springer, New York

    Book  Google Scholar 

  24. Jin W, Vitale SA, Sawin HH (2002) Plasma–surface kinetics and simulation of feature profile evolution in Cl2 + HBr etching of polysilicon. J Vac Sci Technol A 20:2106

    Article  CAS  Google Scholar 

  25. Lieberman MA, Lichtenberg AJ (1994) Principles of plasma discharges and materials processing. Wiley, New York

    Google Scholar 

  26. Efremov AM, Kim D-P, Kim C-I (2003) On mechanisms of argon addition influence on etching rate in chlorine plasma. Thin Solid Films 435:232

    Article  CAS  Google Scholar 

  27. Efremov AM, Kim DP, Kim CI (2004) Simple model for ion-assisted etching using Cl2/Ar inductively coupled plasma. IEEE Trans Plasma Sci 32:1344

    Article  CAS  Google Scholar 

  28. DR Lide (1998–1999) Handbook of chemistry and physics. CRC Press, New York

Download references

Acknowledgement

This work was supported by a Korea University Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-Ho Kwon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, N., Efremov, A., Hwang, HG. et al. Etching Kinetics and Surface Conditions for KNbxOy Thin Films with Fluorine- and Chlorine-Based Plasma Chemistries. Plasma Chem Plasma Process 40, 625–640 (2020). https://doi.org/10.1007/s11090-020-10064-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-020-10064-4

Keywords

Navigation