Skip to main content
Log in

High-throughput phenotypic screening of random genomic fragments in transgenic rice identified novel drought tolerance genes

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Novel drought tolerance genes were identified by screening thousands of random genomic fragments from grass species in transgenic rice.

Abstract

Identification of agronomically important genes is a critical step for crop breeding through biotechnology. Multiple approaches have been employed to identify new gene targets, including comprehensive screening platforms for gene discovery such as the over-expression of libraries of cDNA clones. In this study, random genomic fragments from plants were introduced into rice and screened for drought tolerance in a high-throughput manner with the aim of finding novel genetic elements not exclusively limited to coding sequences. To illustrate the power of this approach, genomic libraries were constructed from four grass species, and screening a total of 50,825 transgenic rice lines for drought tolerance resulted in the identification of 12 reproducibly efficacious fragments. Of the twelve, two were from the mitochondrial genome of signal grass and ten were from the nuclear genome of buffalo grass. Subsequent sequencing and analyses revealed that the ten fragments from buffalo grass carried a similar genetic element with no significant homology to any previously characterized gene. The deduced protein sequence was rich in acidic amino acid residues in the C-terminal half, and two of the glutamic acid residues in the C-terminal half were shown to play an important role in drought tolerance. The results demonstrate that an open-ended screening approach using random genomic fragments could discover trait genes distinct from gene discovery based on known pathways or biased toward coding sequence over-expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Benfey PN, Chua NH (1990) The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250:959–966

    Article  CAS  PubMed  Google Scholar 

  • Bor NL (1960) The grasses of Burma, Ceylon, India and Pakistan (excluding Bambuseae). Pergamon Press, London

    Google Scholar 

  • Chou CC, Wang AH (2015) Structural D/E-rich repeats play multiple roles especially in gene regulation through DNA/RNA mimicry. Mol BioSyst 11:2144–2151

    Article  CAS  PubMed  Google Scholar 

  • Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675–689

    Article  CAS  PubMed  Google Scholar 

  • Dinesh-Kumar SP, Baker BJ (2000) Alternatively spliced N resistance gene transcripts: their possible role in tobacco mosaic virus resistance. Proc Natl Acad Sci USA 97:1908–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321

    Article  CAS  PubMed  Google Scholar 

  • Draper CK, Hays JB (2000) Replication of chloroplast, mitochondrial and nuclear DNA during growth of unirradiated and UVB-irradiated Arabidopsis leaves. Plant J 23:255–265

    Article  CAS  PubMed  Google Scholar 

  • El Baidouri M, Carpentier MC, Cooke R, Gao D, Lasserre E, Llauro C, Mirouze M, Picault N, Jackson SA, Panaud O (2014) Widespread and frequent horizontal transfers of transposable elements in plants. Genome Res 24:831–838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fukayama H, Tsuchida H, Agarie S, Nomura M, Onodera H, Ono K, Lee BH, Hirose S, Toki S, Ku MS, Makino A, Matsuoka M, Miyao M (2001) Significant accumulation of C4-specific pyruvate, orthophosphate dikinase in a C3 plant, rice. Plant Physiol 127:1136–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habben JE, Bao X, Bate NJ, DeBruin JL, Dolan D, Hasegawa D, Helentjaris TG, Lafitte RH, Lovan N, Mo H, Reimann K, Schussler JR (2014) Transgenic alteration of ethylene biosynthesis increases grain yield in maize under field drought-stress conditions. Plant Biotechnol J 12:685–693

    Article  CAS  PubMed  Google Scholar 

  • Hiei Y, Komari T (2008) Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat Protoc 3:824–834

    Article  CAS  PubMed  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  CAS  PubMed  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180

    Article  CAS  Google Scholar 

  • Ichikawa T, Nakazawa M, Kawashima M et al (2006) The FOX hunting system: an alternative gain-of-function gene hunting technique. Plant J 48:974–985

    Article  CAS  PubMed  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  CAS  Google Scholar 

  • International Wheat Genome Sequencing Consortium (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191

    Article  CAS  Google Scholar 

  • ISAAA (2018) Global status of commercialized biotech/GM crops in 2018: biotech crops continue to help meet the challenges of increased population and climate change. ISAAA Brief No. 54. ISAAA, Ithaca, NY

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    Article  CAS  PubMed  Google Scholar 

  • Ishida Y, Tsunashima M, Hiei Y, Komari T (2015) Wheat (Triticum aestivum L.) transformation using immature embryos. Methods Mol Biol 1223:189–198

    Article  CAS  PubMed  Google Scholar 

  • Kaiser K, Murrey N (1985) Construction of representative genomic DNA libraries. In: Glover DM (ed) DNA cloning, vol 1. IRL Press Ltd., Oxford, pp 1–47

    Google Scholar 

  • Kondou Y, Higuchi M, Takahashi S et al (2009) Systematic approaches to using the FOX hunting system to identify useful rice genes. Plant J 57:883–894

    Article  CAS  PubMed  Google Scholar 

  • Lawrence JG, Roth JR (1996) Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics 143:1843–1860

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee K, Zhu H, Yang B, Wang K (2019) An Agrobacterium-mediated CRISPR/Cas9 platform for genome editing in maize. Methods Mol Biol 1917:121–143

    Article  CAS  PubMed  Google Scholar 

  • Lemos ML, Crosa JH (1992) Highly preferred site of insertion of Tn7 into the chromosome of Vibrio anguillarum. Plasmid 27:161–163

    Article  CAS  PubMed  Google Scholar 

  • Liu L, White MJ, MacRae TH (1999) Transcription factors and their genes in higher plants functional domains, evolution and regulation. Eur J Biochem 262:247–257

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Campbell BC, Godwin ID (2014) Sorghum genetic transformation by particle bombardment. In: Henry R, Furtado A (eds) Cereal genomics: methods in molecular biology (methods and protocols). Humana Press, Totowa, pp 219–234

    Chapter  Google Scholar 

  • Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18:50–60

    Article  Google Scholar 

  • Miousse IR, Chalbot MC, Lumen A, Ferguson A, Kavouras IG, Koturbash I (2015) Response of transposable elements to environmental stressors. Mutat Res Rev Mutat Res 765:19–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moyers BT, Morrell PL, McKay JK (2018) Genetic costs of domestication and improvement. J Hered 109:103–116

    Article  PubMed  Google Scholar 

  • Nakamura H, Hakata M, Amano K et al (2007) A genome-wide gain-of function analysis of rice genes using the FOX-hunting system. Plant Mol Biol 65:357–371

    Article  CAS  PubMed  Google Scholar 

  • Nuccio ML, Wu J, Mowers R, Zhou HP, Meghji M, Primavesi LF, Paul MJ, Chen X, Gao Y, Haque E, Basu SS, Lagrimini LM (2015) Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nat Biotechnol 33:862–869

    Article  CAS  PubMed  Google Scholar 

  • Nuccio ML, Paul M, Bate NJ, Cohn J, Cutler SR (2018) Where are the drought tolerant crops? An assessment of more than two decades of plant biotechnology effort in crop improvement. Plant Sci 273:110–119

    Article  CAS  PubMed  Google Scholar 

  • Qu R, Luo H, Meier VD (2008) Turfgrass. In: Kole C, Hall TC (eds) Compendium of transgenic crop plants: transgenic plantation crops, ornamentals and trufgrasses. Blackwell Publishing, Oxford, pp 177–218

    Chapter  Google Scholar 

  • Reuzeau C, Frankard V, Hatzfeld Y, Sanz A, Van Camp W, Lejeune P, De Wilde C, Lievens K, de Wolf J, Vranken E, Peerbolte R, Broekaert W (2006) Traitmill™: a functional genomics platform for the phenotypic analysis of cereals. Plant Genet Resour 4:20–24

    Article  CAS  Google Scholar 

  • Sainz MB, Goff SA, Chandler VL (1997) Extensive mutagenesis of a transcriptional activation domain identifies single hydrophobic and acidic amino acids important for activation in vivo. Mol Cell Biol 17:115–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Eickbush TH (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9:3353–3362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin K, Gao C, Qiu JL (2017) Progress and prospects in plant genome editing. Nat Plants 3:17107

    Article  CAS  PubMed  Google Scholar 

  • Yu C, Wang L, Xu S, Zeng Y, He C, Chen C, Huang W, Zhu Y, Hu J (2015) Mitochondrial ORFH79 is essential for drought and salt tolerance in rice. Plant Cell Physiol 56:2248–2258

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Malzahn AA, Sretenovic S, Qi Y (2019) The emerging and uncultivated potential of CRISPR technology in plant science. Nat Plants 5:778–794

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the members of our research institutes for valuable discussions and technical assistance.

Accession numbers

pLC20GWH, LC506529; pLC31GWH, LC506530; HF001, LC507188; HF003, LC507189; HF050, LC507217; HF051, LC507218.

Author information

Authors and Affiliations

Authors

Contributions

TKomo, YS, NK, NT, NB and TKoma designed the research and experiments. TKomo, YS, MK, NU, SU, NI, YH, KK, RK, EB and NB performed the experiments. TKomo, YS, KW, PO, NT, NB and TKoma regularly discussed the research progress and developed the research strategy. TKomo, YS, NB and TKoma wrote the manuscript.

Corresponding author

Correspondence to Toshiyuki Komori.

Ethics declarations

Conflict of interest

All authors are or were affiliated with Japan Tobacco Inc. or Syngenta Crop Protection LLC, who were also funders of this study.

Additional information

Communicated by Lizhong Xiong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komori, T., Sun, Y., Kashihara, M. et al. High-throughput phenotypic screening of random genomic fragments in transgenic rice identified novel drought tolerance genes. Theor Appl Genet 133, 1291–1301 (2020). https://doi.org/10.1007/s00122-020-03548-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-020-03548-6

Navigation