Skip to main content
Log in

Dielectric properties of (Yb0.5Ta 0.5)xTi1−xO2 ceramics with colossal permittivity and low dielectric loss

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High dielectric loss is one of the current obstacles to the application of dielectric materials. In this paper, we synthesized a new dielectric material, i.e., (Yb + Ta)-co-doped TiO2 dielectric material. The (Yb0.5Ta0.5)xTi1−xO2 ceramics were synthesized by the solid-state reaction method. It has been found that (Yb0.5Ta0.5)xTi1−xO2 ceramics had a dense ceramic microstructure, and (Yb0.5Ta0.5)xTi1−xO2 ceramics exhibited the rutile TiO2 structure. All (Yb0.5Ta0.5)xTi1−xO2 ceramics exhibited low dielectric loss (< 0.1) and large dielectric constant (> 105). The optimal dielectric properties are obtained at a doping level of x = 0.05 with dielectric constant of 5.1 × 105 and dielectric loss of 0.037. Further study of the thermal stability of the dielectric properties was performed in the temperature range from − 50 to 250 ℃, which indicates that the ceramic sample with x = 0.05 co-dopant concentration maintains good dielectric properties in the temperature range from − 50 to 100 ℃. XPS shows that high dielectric properties can be explained by the electron-pinned defect-dipole mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Lunkenheimer, S. Krohns, S. Riegg, S.G. Ebbinghaus, A. Reller, A. Loidl, Eur. Phys. J. Spec. Top. 180(1), 61–89 (2010)

    Article  Google Scholar 

  2. C.C. Homes, T. Vogt, Nat. Mater. 12(9), 782–783 (2013)

    Article  CAS  Google Scholar 

  3. M.T. Buscaglia, M. Viviani, V. Buscaglia, L. Mitoseriu, A. Testino, P. Nanni, Z. Zhao, M. Nygren, C. Harnagea, D. Piazza, C. Galassi, Phys. Rev. B 73(6), 064114–064123 (2006)

    Article  Google Scholar 

  4. C.C. Wang, L.W. Zhang, Appl. Phys. Lett. 88(4), 042906–042908 (2006)

    Article  Google Scholar 

  5. M. Li, A. Feteira, D.C. Sinclair, A.R. West, Appl. Phys. Lett. 88(23), 232903–232905 (2006)

    Article  Google Scholar 

  6. J. Wu, C.W. Nan, Y. Lin, D. Yuan, Phys. Rev. Lett. 89(21), 217601–217604 (2002)

    Article  Google Scholar 

  7. R.J. Cava, R.M. Fleming, P. Littlewood, E.A. Rietman, L.F. Schneemeyer, Phys. Rev. B 30(6), 3228–3239 (1984)

    Article  CAS  Google Scholar 

  8. K.R. Deepthi, T. Pandiyarajan, B. Karthikeyan, J. Mater. Sci.: Mater. Electron. 24(3), 1045–1051 (2012)

    Google Scholar 

  9. S. Ke, H. Fan, H. Huang, J. Electroceram. 22(1–3), 252–256 (2007)

    Google Scholar 

  10. W. Pan, M. Cao, H. Hao, Z. Yao, Z. Yu, H. Liu, J. Eur. Ceram. Soc. 40(1), 55–49 (2019)

    Google Scholar 

  11. J. Boonlakhorn, P. Kidkhunthod, N. Chanlek, P. Thongbai, J. Eur. Ceram. Soc. 38(1), 137–143 (2018)

    Article  Google Scholar 

  12. W.B. Hu, Y. Liu, R.L. Withers, T.J. Frankcombe, L. Nore´n, A. Snashall, M. Kitchin, P. Smith, B. Gong, H. Chen, J. Schiemer, F. Brink, J. Wong-Leung, Nat. Mater. 12(9), 821–826 (2013)

    Article  CAS  Google Scholar 

  13. J.L. Li, F. Li, Y.Y. Zhuang, L. Jin, L.H. Wang, X.Y. Wei, Z. Xu, S.J. Zhang, J. Appl. Phys. 116(7), 074105 (2014)

    Article  Google Scholar 

  14. X.G. Zhao, P. Liu, Y.C. Song, A.P. Zhang, X.M. Chen, J.P. Zhou, Phys. Chem. Chem. Phys. 17(37), 24475–24475 (2015)

    Article  CAS  Google Scholar 

  15. Y.L. Song, X.J. Wang, Y. Sui, Z.Y. Liu, Y. Zhang, H.S. Zhan, B.Q. Song, Z.G. Liu, Z. Lv, L. Tao, J.K. Tang, Sci. Rep. 6, 21478 (2016)

    Article  CAS  Google Scholar 

  16. S. Mandal, S. Pal, A.K. Kundu, K.S.R. Menon, A. Hazarika, M. Rioult, R. Belkhou, Appl. Phys. Lett. 109(9), 092906 (2016)

    Article  Google Scholar 

  17. Y. Song, X. Wang, X. Zhang, Y. Sui, Y. Zhang, Z. Liu, Z. Lv, Y. Wang, P. Xu, B. Song, J. Mater. Chem. C. 28, 6798–6805 (2016)

    Article  Google Scholar 

  18. T. Nachaithong, P. Thongbai, S. Maensiri, J. Eur. Ceram. Soc. 37(2), 655–660 (2017)

    Article  CAS  Google Scholar 

  19. J. Li, F. Li, Z. Xu, Y. Zhuang, S. Zhang, Ceram. Int. 41, S798–S803 (2015)

    Article  CAS  Google Scholar 

  20. J. Li, F. Li, C. Li, G. Yang, Z. Xu, S. Zhang, Sci. Rep. 5, 8295 (2015)

    Article  CAS  Google Scholar 

  21. Y. Song, X. Wang, Y. Sui, Z. Liu, Y. Zhang, H. Zhan, B. Song, Z. Liu, Z. Lv, L. Tao, J.Tang, Sci. Rep. 6, 21478 (2016)

    Article  CAS  Google Scholar 

  22. W. Tuichai, S. Danwittayakul, N. Chanlek, P. Srepusharawoot, P. Thongbai, S. Maensiri, RSC Adv. 7, 95–105 (2017)

    Article  CAS  Google Scholar 

  23. W. Dong, W. Hu, A. Berlie, K. Lau, H. Chen, R.L. Withers, Y. Liu, ACS Appl. Mater. Interfaces 7(45), 25321–25325 (2015)

    Article  CAS  Google Scholar 

  24. X. Cheng, Z. Li, J. Wu, J. Mater. Chem. A 11, 5805–5810 (2015)

    Article  Google Scholar 

  25. W. Hu, K. Lau, Y. Liu, R.L. Withers, H. Chen, L. Fu, B. Gong, W. Hutchison, Chem. Mater. 27(14), 4934–4942 (2015)

    Article  CAS  Google Scholar 

  26. Z. Li, J. Wu, JMAT 3, 112–120 (2017)

    Google Scholar 

  27. Z. Li, J. Wu, W. Wu, J. Mater. Chem. C 3(35), 9206–9216 (2015)

    Article  CAS  Google Scholar 

  28. X. Zhao, P. Liu, J. Am. Ceram. Soc. 100(8), 3505–3513 (2017)

    Article  CAS  Google Scholar 

  29. M.-Y. C.Yang, X. Tse, J. Wei, Hao, J. Mater. Chem. C 21, 5170–5175 (2017)

    Article  Google Scholar 

  30. X.H. Wei, W.J. Jie, Z.B. Yang, F.G. Zheng, H.Z. Zeng, Y. Liu, J.H. Hao, J. Mater. Chem. C 3, 11005 (2015)

    Article  CAS  Google Scholar 

  31. J.L. Li, F. Li, X.H. Zhu, D.B. Lin, Q.F. Li, W.H. Liu, Z. Xu, J. Alloys Compd. 692, 375–380 (2016)

    Article  Google Scholar 

  32. M.A. Subbramanian, A.W. Sleight, Solid State Sci. 33(23), 347–351 (2010)

    Google Scholar 

  33. P.R. Bueno, M.A. Ramírez, J.A. Varela, E. Longo, Appl. Phys. Lett. 89(19), 191117 (2016)

    Article  Google Scholar 

  34. W. Tuichai, N. Thongyong, S. Danwittayakul, N. Chanlek, P. Srepusharawoot, P. Thongbai, S. Maensiri, Mater. Des. 123, 15–23 (2017)

    Article  CAS  Google Scholar 

  35. N. Thongyong, W. Tuichai, N. Chanlek, P. Thongbai, Ceram. Int. 43, 15466–15471 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51605206) and JiangSu Province Key Laboratory of High-end structural Materials, No. hsm1806.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengwei Guo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, L., Guo, P., Kong, D. et al. Dielectric properties of (Yb0.5Ta 0.5)xTi1−xO2 ceramics with colossal permittivity and low dielectric loss. J Mater Sci: Mater Electron 31, 3654–3661 (2020). https://doi.org/10.1007/s10854-020-02923-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02923-9

Navigation