Skip to main content
Log in

Design and fabrication of hybrid carbon dots/titanium dioxide (CDs/TiO2) photoelectrodes for highly efficient dye-sensitized solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Hybrid carbon dots/titanium dioxide (CDs/TiO2) photoelectrodes for use in high-performance dye-sensitized photovoltaic solar cells were obtained by a facile one-step hydrothermal approach. The structural, morphological, and optical properties of the as-obtained samples were analyzed by powder X-ray diffraction analysis, transmission electron microscopy, Raman spectroscopy, ultraviolet–visible (UV–Vis) diffuse reflectance spectroscopy, and photoluminescence spectroscopy, revealing anatase crystal structure with individual spherical molded nanoparticles for both TiO2 and the composite samples. The size of the nanoparticles ranged from 30 to 40 nm, being consistently decorated on the carbon dots. The CDs/TiO2 samples exhibited enhanced surface area (112 m2/g) and pore size (30–35 nm) compared with bare TiO2 (77 m2/g and 42–48 nm), which is invaluable for improving solar cell efficiency. The JV characteristic illustrated that the CDs/TiO2 photoanode resulted in high photovoltaic conversion efficiency (PCE) of 15.5% compared with 7.8% when using bare TiO2. These results suggest that incorporation of carbon dots enhanced the PCE of the cells using bare TiO2. A mechanism for this improvement is also proposed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Qi, K. Zhao, G. Li, Y. Gao, H. Zhao, R. Yu, Z. Tang, Multi-shelled CeO2 hollow microspheres as superior photocatalysts for water oxidation. Nanoscale. 6, 4072–4077 (2014)

    Article  CAS  Google Scholar 

  2. Q. Zhang, E. Uchaker, S.L. Candelaria, G. Cao, Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 42, 3127–3171 (2013)

    Article  CAS  Google Scholar 

  3. N.Q. Wu, J. Wang, D. Tafen, H. Wang, J.-G. Zheng, J.P. Lewis, X. Liu, S.S. Leonard, A. Manivannan, Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2, (101) nanobelts. J. Am. Chem. Soc. 132, 6679–6685 (2010)

    Article  CAS  Google Scholar 

  4. J. Tian, Y. Sang, G. Yu, H. Jiang, X. Mu, H. Liu, A Bi2WO6-based hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation. Adv. Mater. 25, 5075–5080 (2013)

    Article  CAS  Google Scholar 

  5. J.-L. Lan, Z. Liang, Y.-H. Yang, F.S. Ohuchi, S.A. Jenekhe, G. Cao, The effect of SrTiO3: ZnO as cathodic buffer layer for inverted polymer solar cells. Nano Energy 4, 140–149 (2014)

    Article  CAS  Google Scholar 

  6. L. Wang, T. Sasaki, Titanium oxide nanosheets: graphene analogues with versatile functionalities. Chem. Rev. 114, 9455–9486 (2014)

    Article  CAS  Google Scholar 

  7. M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Graetzel, Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X=Cl, Br, I, CN, and SCN) on nanocrystalline TiO2 electrodes. J. Am. Chem. Soc. 8, 6382–6390 (1993)

    Article  Google Scholar 

  8. A. Hagfeldt, M. Grätzel, Molecular photovoltaics. Acc. Chem. Res. 8, 269–277 (2000)

    Article  Google Scholar 

  9. M. Grätzel, Photo electrochemical cells. Nature 8, 338–344 (2001)

    Article  Google Scholar 

  10. J. Lim, M. Lee, S.K. Balasingam, J. Kim, D. Kim, Y. Jun, Fabrication of panchromatic dye-sensitized solar cells using pre-dye coated TiO2 nanoparticles by a simple dip coating technique. RSC Adv. 8, 4801–4805 (2013)

    Article  Google Scholar 

  11. F.H. Ali, D.B. Alwan, Effect of particle size of TiO2 and additive materials to improve dye sensitized solar cells efficiency. J. Phys. 1003, 012077 (2018)

    Google Scholar 

  12. S. Kumar, S. Pradhan, A. Dhar, Enhanced performance with the incorporation of organo-metal trihalide perovskite in nanostructured ZnO solar cell. Proc. Eng. 141, 1–6 (2016)

    Article  CAS  Google Scholar 

  13. F. Wang, Y. Zhang, M. Yang, J. Du, L. Yang, L.S Fan, Y. Sui, X. Liu, J. Yang, Achieving efficient flexible perovskite solar cells with room-temperature processed tungsten oxide electron transport layer. J. Power Sour. 440 227157 (2019)

    Article  CAS  Google Scholar 

  14. V.-D. Dao, L.L. Larina, J.-K. Lee, K.-D. Jung, B.T. Huye, H.-S. Choi, Graphene-based RuO2 nanohybrid as a highly efficient catalyst for triiodide reduction in dye-sensitized solar cells. Carbon 81, 710–719 (2015)

    Article  CAS  Google Scholar 

  15. X. Guo, W. Di, C. Chen, X. Wang, W. Qin, Enhanced near-infrared photocatalysis of NaYF4:Yb, Tm/CdS/TiO2 composites. Dalton Trans. 43, 1048–1054 (2014)

    Article  CAS  Google Scholar 

  16. S.U. Khan, M. Al-Shahry, W.B. Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297, 2243–2245 (2002)

    Article  CAS  Google Scholar 

  17. J. Tian, Z. Zhao, A. Kumar, R.I. Boughton, H. Liu, Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review. Chem. Soc. Rev. 43, 6920–6937 (2014)

    Article  CAS  Google Scholar 

  18. B. Seger, J. McCray, A. Mukherji, X. Zong, Z. Xing, L. Wang, An n-type to p-type switchable photoelectrode assembled from alternating exfoliated titania nanosheets and polyaniline layers. Angew. Chem. Int. Ed. 52, 6400–6403 (2013)

    Article  CAS  Google Scholar 

  19. X. Wang, Z. Li, J. Shi, Y. Yu, One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts. Chem. Rev. 114, 9346–9384 (2014)

    Article  CAS  Google Scholar 

  20. X. Han, Y. Han, H. Huang, H. Zhang, X. Zhang, R. Liu, Y. Liu, Z. Kang, Synthesis of carbon quantum dots/SiO2 porous nanocomposites and their catalytic ability for photo-enhanced hydrocarbon selective oxidation. Dalton Trans. 42, 10380–10383 (2013)

    Article  CAS  Google Scholar 

  21. K. Li, F.Y. Su, W.D. Zhang, Modification of g-C3N4 nanosheets by carbon quantum dots for highly efficient photocatalytic generation of hydrogen. Appl. Surf. Sci. 375, 110–117 (2016)

    Article  CAS  Google Scholar 

  22. S. Qu, X Wang, Q. Lu, X. Liu, L. Wang, A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew. Chem. 124 12381–12384 (2012)

    Article  Google Scholar 

  23. M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, K. Thavamani, A novel microwave synthesis of nanocrystalline SnO2 and its structural optical and dielectric properties. J. Mater. Sci. Mater. Electron. 25, 730–735 (2014)

    Article  CAS  Google Scholar 

  24. L.A.A. Rodríguez, M. Pianassola, D.N. Travess, Production of TiO2 coated multiwall carbon nanotubes by the sol–gel technique. Mater. Res. 20, 96–103 (2017)

    Article  Google Scholar 

  25. M. Parthibavarman, M. Karthik, S. Prabhakaran, Facile and one step synthesis of WO3 nanorods and nanosheets as an efficient photocatalyst and humidity sensing material. Vacuum 155, 224–232 (2018)

    Article  CAS  Google Scholar 

  26. M. Parthibavarman, S. Sathishkumar, M. Jayashree, R. BoopathiRaja, Microwave-assisted synthesis of pure and Ag-doped SnO2 quantum dots as novel platform for high photocatalytic activity performance. J. Clust. Sci. 30, 351–363 (2019)

    Article  CAS  Google Scholar 

  27. M. Parthibavarman, S. Sathishkumar, S. Prabhakaran, M. Jayashree, R. BoopathiRaja, High visible light-driven photocatalytic activity of large surface area Cu doped SnO2 nanorods synthesized by novel one-step microwave irradiation method. J. Iran. Chem. Soc. 15, 2789–2801 (2018)

    Article  CAS  Google Scholar 

  28. M. Parthibavarman, M. Karthik, P. Sathishkumar, R. Poonguzhali, Rapid synthesis of novel Cr-doped WO3 nanorods: an efficient electrochemical and photocatalytic performance. J. Iran. Chem. Soc. 15, 1419–1430 (2018)

    Article  CAS  Google Scholar 

  29. S. Singh, A. Singh, N. Kaur, Efficiency investigations of organic/inorganic hybrid ZnO nanoparticles based dye-sensitized solar cells. J. Mater. 2016, 11 (2016)

    Google Scholar 

  30. Z. Li, F. Gong, G. Zhou, Z.-S. Wang, NiS2/reduced graphene oxide nanocomposites for efficient dye-sensitized solar cells. J. Phys. Chem. C 117, 6561–6566 (2013)

    Article  CAS  Google Scholar 

  31. M. Indhumathy, A. Prakasam, A one pot hydrothermal stimulated CdS-reduced graphene oxide (CdS/rGO) hybrid nanocomposite for high performance photovoltaic applications. J. Mater. Sci. Mater. Electron. 20, 15444–15451 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Prakasam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padmanathan, S., Prakasam, A. Design and fabrication of hybrid carbon dots/titanium dioxide (CDs/TiO2) photoelectrodes for highly efficient dye-sensitized solar cells. J Mater Sci: Mater Electron 31, 3492–3499 (2020). https://doi.org/10.1007/s10854-020-02897-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02897-8

Navigation