Skip to main content
Log in

Propose of high performance resistive type H2S and CO2 gas sensing response of reduced graphene oxide/titanium oxide (rGO/TiO2) hybrid sensors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Few studies have investigated the electrical and gas sensing properties of reduced graphene oxide/titanium dioxide (rGO/TiO2) composite thin films by spray pyrolysis technique. In this work, we report the synthesis and systematic investigation of structural, morphological and gas sensing properties of rGO-loaded TiO2 nanocomposite thin films. The XRD and AFM results suggest that both pure and rGO/TiO2 nanocomposite showed crystalline with tetragonal anatase phase and individual spherical shaped nanoparticles with average diameter of around 20–30 nm was observed. rGO/TiO2 nanocomposite showed high surface area (112 m2/g) and larger pores (11.2 nm) than bare TiO2 (89 m2/g; 32.3 nm). This huge surface area can beneficial for enhancing the gas sensing performance. Resistive type gas sensor set up was constructed and studied the sensing responses towards H2S and CO2 gases. The results suggest that the rGO/TiO2 nanocomposite sensor showed high sensitivity (92%), stability (only loss 3.5%), fast response (30 s) and recovery time (25 s) towards CO2 gas. The improved gas sensing mechanism of the proposed sensor was discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. V. Galstyan, A. Ponzoni, I. Kholmanov, M.M. Natile, E. Comini, S. Nematov, G. Sberveglieri, Investigation of reduced graphene oxide and a Nb-doped TiO2 nanotube hybrid structure to improve the gas-sensing response and selectivity. ACS Sens. 4, 2094–2100 (2019)

    Article  CAS  Google Scholar 

  2. C. Melo, M. Jullien, Y. Battie, A.E. Naciri, J. Ghanbaja, F. Montaigne, J.F. Pierson, F. Rigoni, N. Almqvist, A. Vomiero, S. Migot, Semi-transparent p-Cu2O/n-ZnO nanoscale-film heterojunctions for photodetection and photovoltaic applications. ACS Appl. Nano Mater. 2, 4358–4366 (2019)

    Article  Google Scholar 

  3. X. Dong, K. Wu, W. Zhu, P. Wu, J. Hou, Z. Wang, R. Li, J. Wu, Z. Liu, X. Guo, TiO2 nanotubes/g-C3N4 quantum dots/rGO Schottky heterojunction nanocomposites as sensors for ppb-level detection of NO2. J. Mater. Sci. 54, 7834–7849 (2019)

    Article  CAS  Google Scholar 

  4. E. Lee, A. VahidMohammadi, B.C. Prorok, Y.S. Yoon, M. Beidaghi, D.-J. Kim, Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl. Mater. Interfaces. 9, 37184–37190 (2017)

    Article  CAS  Google Scholar 

  5. A.J. Bandodkar, I. Jeerapan, J. Wang, Wearable chemical sensors: present challenges and future prospects. ACS Sens. 1, 464–482 (2016)

    Article  CAS  Google Scholar 

  6. A. Hazra, P.P. Chattopadhyay, P. Bhattacharyya, Tailoring of the gas sensing performance of TiO2 nanotubes by 1-D vertical electron transport technique. IEEE Trans. Electron Devices 61, 3483–3489 (2014)

    Article  CAS  Google Scholar 

  7. A. Hazra, K. Dutta, B. Bhowmik, P.P. Chattopadhyay, P. Bhattacharyya, Room temperature alcohol sensing by oxygen vacancy controlled TiO2 nanotube array. Appl. Phys. Lett. 105, 081604–081609 (2014)

    Article  Google Scholar 

  8. K. Dutta, P.P. Chattopadhyay, C.W. Lu, M.S. Ho, P. Bhattacharyya, A highly sensitive BTX sensor based on electrochemically derived wall connected TiO2 nanotubes. Appl. Surf. Sci. 354, 353–361 (2015)

    Article  CAS  Google Scholar 

  9. H.-J. Kim, J.-H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuators B 192, 607–627 (2014)

    Article  CAS  Google Scholar 

  10. G. Neri, First fifty years of chemoresistive gas sensors. Chemosensors 3, 1–20 (2015)

    Article  CAS  Google Scholar 

  11. K. Nakataa, A. Fujishima, TiO2 photocatalysis: design and applications. J Photochem. Photobiol C13, 169–189 (2012)

    Article  Google Scholar 

  12. X.J. Huang, Y.K. Choi, Chemical sensors based on nanostructured materials. Sens Actuators B 122, 659–671 (2007)

    Article  CAS  Google Scholar 

  13. V. Aroutiounian, Metal oxide hydrogen, oxygen, and carbon monoxide sensors for hydrogen setups and cells. Int J. Hydrogen Energy 32, 1145–1158 (2007)

    Article  CAS  Google Scholar 

  14. Y. Shimizu, M. Egashira, Basic aspects and challenges of semiconductor gas sensors. MRS Bull. 24, 18–24 (1999)

    Article  CAS  Google Scholar 

  15. E. Sennik, Z. Colak, N. Kılınc, Z.Z. Ozturk, Synthesis of highly ordered TiO2 nanotubes for a hydrogen sensor. Int J. Hydrog Energy. 35, 44204427 (2010)

    Article  Google Scholar 

  16. J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Science 287, 622–625 (2000)

    Article  CAS  Google Scholar 

  17. L. Guo, X. Kou, M. Ding, C. Wang, L. Dong, H. Zhang, C. Feng, Y. Sun, Y. Gao, P. Sun, G. Lu, Reduced graphene oxide/aFe2O3 composite nanofibers for application in gas sensors. Sens. Actuators B. 244, 233–242 (2017)

    Article  CAS  Google Scholar 

  18. W.J. Ma, S.H. Chen, S.Y. Yang, W.P. Chen, W. Weng, Y.H. Cheng, M.F. Zhu, Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density. Carbon 113, 151–158 (2017)

    Article  CAS  Google Scholar 

  19. X. Pan, Y. Zhao, S. Wang, Z. Fan, TiO2/graphene nanocomposite for photo-catalytic application, in Materials and Processes for Energy: Communicating Current Research and Technological Developments, ed. by A. Mendez-Vilas (Badajoz, Formatex, 2013), pp. 913–920

    Google Scholar 

  20. Y. Fan, K. Huang, D. Niu, C. Yang, Q. Jing, TiO2-graphene nanocomposite for electrochemical sensing of adenine and guanine. Electrochim. Acta 56, 4685–4690 (2011)

    Article  CAS  Google Scholar 

  21. X. Li, Y. Zhao, X. Wang, J. Wang, A.M. Gaskov, S. Akbar, Reduced graphene oxide (rGO) decorated TiO2 microspheres for selective room-temperature gas sensors. Sens. Actuators B 230, 330–336 (2016)

    Article  CAS  Google Scholar 

  22. Z. Ye, H. Tai, T. Xie, Z. Yuan, C. Liu, Y. Jiang, Room temperature formaldehyde sensor with enhanced performance based on reduced graphene oxide/titanium dioxide. Sens. Actuators B 223, 149–156 (2016)

    Article  CAS  Google Scholar 

  23. H. Sun, T. Peng, The Preparation of Graphene Materials via Oxidation-Reduction (Science Press, Beijing, 2015)

    Google Scholar 

  24. S.L. Patil, M.A. Chougule, S. Sen, V.B. Patil, Measurements on room temperature gas sensing properties of CSA doped polyaniline–ZnO nanocomposites. Measurement 45, 243–249 (2012)

    Article  Google Scholar 

  25. M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, K. Thavamani, A novel microwave synthesis of nanocrystalline SnO2 and its structural optical and dielectric properties. J. Mater. Sci. Mater. Electron. 25, 730–735 (2014)

    Article  CAS  Google Scholar 

  26. S. Basu, P. Bhattacharyya, Recent developments on graphene and graphene oxide based solid state gas sensors. Sens. Actuators B 173, 1–21 (2012)

    Article  CAS  Google Scholar 

  27. K.H. Kim, M. Yang, K.M. Cho, Y.S. Jun, S.B. Lee, H.T. Jung, High quality reduced graphene oxide through repairing withmulti-layered graphene ball nanostructures. Nat. Sci. Rep. 3, 3251–3258 (2013)

    Article  Google Scholar 

  28. G.T.S. How, A. Pandikumar, H.N. Ming, L.H. Ngee, Highly exposed 001 facets of Titanium dioxide modified with reduced graphene oxide for dopamine sensing. Nat. Sci. Rep. 179, 61–68 (2012)

    Google Scholar 

  29. S.S. Roy, J.P. Gilberto, Synthesis and optical characterization of pure and Cu doped SnO2 thin film deposited by spray pyrolysis. J. Optoelect. Adv. Mater. 12, 1479–1484 (2010)

    CAS  Google Scholar 

  30. R. BoopathiRaja, M. Parthibavarman, A.N. Begum, Hydrothermal induced novel CuCo2O4 electrode for high performance supercapacitor applications. Vacuum 165, 96–104 (2019)

    Article  CAS  Google Scholar 

  31. M. Parthibavarman, M. Karthik, S. Prabhakaran, Facile and one step synthesis of WO3 nanorods and nanosheets as an efficient photocatalyst and humidity sensing material. Vacuum 155, 224–232 (2018)

    Article  CAS  Google Scholar 

  32. M. Indhumathy, A. Prakasam, Controllable synthesis of NiS/rGO hybrid composite: an excellent counter electrode for dye sensitized solar cell. J. Mater. Sci. Mater. Electron. 30, 15444–15451 (2019)

    Article  CAS  Google Scholar 

  33. M. Parthibavarman, V. Hariharan, C. Sekar, V.N. Singh, Effect of copper on structural, optical and electrochemical properties of SnO2 nanoparticles. J. Optoelect. Adv. Mater. 12, 1894–1898 (2010)

    CAS  Google Scholar 

  34. M. Parthibavarman, V. Hariharan, C. Sekar, High-sensitivity humidity sensor based on SnO2 nanoparticles synthesized by microwave irradiation method. Mater. Sci. Eng C 31, 840–844 (2011)

    Article  CAS  Google Scholar 

  35. E. Comini, V. Guidi, C. Frigeri, UV light activation of tin oxide thin films for NO2 sensing at low temperatures. Sens. Actuator B 78, 73–77 (2001)

    Article  CAS  Google Scholar 

  36. A. Ruiz, G. Dezanneau, J. Arbiol, J.R. Morante, Study of the influence of Nb content and sintering temperature on TiO2 sensing films. Thin Solid Films 436, 90–94 (2003)

    Article  CAS  Google Scholar 

  37. X.G. Li, Y.Y. Zhao, X.Y. Wang, J. Wang, A.M. Gaskov, A.A. Akbar, Reduced graphene oxide (rGO) decorated TiO2 microspheres for selective room-temperature gas sensors. Sens. Actuator B 230, 330–336 (2016)

    Article  CAS  Google Scholar 

  38. D. Acharyya, P. Bhattacharyya, S. Member, Highly efficient room-temperature gas sensor based on TiO2 nanotube-reduced graphene-oxide hybrid device. IEEE Electron Device Lett. 37, 656–659 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Karthik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthik, P., Gowthaman, P., Venkatachalam, M. et al. Propose of high performance resistive type H2S and CO2 gas sensing response of reduced graphene oxide/titanium oxide (rGO/TiO2) hybrid sensors. J Mater Sci: Mater Electron 31, 3695–3705 (2020). https://doi.org/10.1007/s10854-020-02928-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02928-4

Navigation