Skip to main content
Log in

Applications and impact of nanocellulose based adsorbents

  • Review Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Efficient separation and removal is necessary in applications ranging from environmental remediation to the food sector. A well-designed adsorption system should meet the demands for high efficiency in a cost and time effective manner. In wastewater treatment, the ideal chemical feedstock used to synthesize the adsorbents should themselves been environmentally friendly (i.e. non-toxic) to avoid subsequent environmental issues. Nanocellulose, made of the most abundant organic biopolymer on earth, fulfills many criteria to fit the profile of a highly safe, but efficient adsorbent. A survey of the literature reveals that nanocellulose materials have a proven track record as viable alternatives as adsorbents. To summarize these recent advances, this review describes the methodologies under current use for such designs and gives a systematic overview of these technologies to promote a more focused research in the future for nanocellulose based adsorbent materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abou-Zeid RE, Dacrory S, Ali KA, Kamel S (2018) Novel method of preparation of tricarboxylic cellulose nanofiber for efficient removal of heavy metal ions from aqueous solution. Int J Biol Macromol 119:207–214

    CAS  PubMed  Google Scholar 

  • Abu-Danso E, Peräniemi S, Leiviskä T, Bhatnagar A (2018) Synthesis of S-ligand tethered cellulose nanofibers for efficient removal of Pb(II) and Cd(II) ions from synthetic and industrial wastewater. Environ Pollut 242:1988–1997

    CAS  PubMed  Google Scholar 

  • Abu-Danso E, Bagheri A, Bhatnagar A (2019) Facile functionalization of cellulose from discarded cigarette butts for the removal of diclofenac from water. Carbohydr Polym 219:46–55. https://doi.org/10.1016/j.carbpol.2019.04.090

    Article  CAS  PubMed  Google Scholar 

  • Abushammala H, Mao J (2019) A review of the surface modification of cellulose and nanocellulose using aliphatic and aromatic mono- and di-isocyanates. Molecules. https://doi.org/10.3390/molecules24152782

    Article  PubMed  PubMed Central  Google Scholar 

  • Akveran GA, Köse K, Köse DA (2018) Solvent effect on endosulfan adsorption onto polymeric arginine-methacrylate cryogels. Environ Sci Pollut Res 25:25458–25467

    CAS  Google Scholar 

  • Ali I, Gupta V (2006) Advances in water treatment by adsorption technology. Nat Protoc 1:2661

    CAS  PubMed  Google Scholar 

  • Andaç M, Galaev IY, Denizli A (2016) Affinity based and molecularly imprinted cryogels: applications in biomacromolecule purification. J Chromatogr B 1021:69–80

    Google Scholar 

  • Andresen M, Johansson L-S, Tanem BS, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13:665–677

    CAS  Google Scholar 

  • Anirudhan T, Deepa J (2015) Synthesis and characterization of multi-carboxyl-functionalized nanocellulose/nanobentonite composite for the adsorption of uranium(VI) from aqueous solutions: kinetic and equilibrium profiles. Chem Eng J 273:390–400

    CAS  Google Scholar 

  • Anirudhan TS, Rejeena SR (2012) Poly(acrylic acid)-modified poly(glycidylmethacrylate)-grafted nanocellulose as matrices for the adsorption of lysozyme from aqueous solutions. Chem Eng J 187:150–159. https://doi.org/10.1016/j.cej.2012.01.113

    Article  CAS  Google Scholar 

  • Anirudhan T, Rejeena S (2013) Poly (methacrylic acid-co-vinyl sulfonic acid)-grafted-magnetite/nanocellulose superabsorbent composite for the selective recovery and separation of immunoglobulin from aqueous solutions. Sep Purif Technol 119:82–93

    CAS  Google Scholar 

  • Anirudhan T, Gopal SS, Rejeena S (2015) Synthesis and characterization of poly (ethyleneimine)-modified poly (acrylic acid)-grafted nanocellulose/nanobentonite superabsorbent hydrogel for the selective recovery of β-casein from aqueous solutions. Int J Polym Mater Polym Biomater 64:772–784

    CAS  Google Scholar 

  • Bai L, Liu Y, Ding A, Ren N, Li G, Liang H (2019) Fabrication and characterization of thin-film composite (TFC) nanofiltration membranes incorporated with cellulose nanocrystals (CNCs) for enhanced desalination performance and dye removal. Chem Eng J 358:1519–1528. https://doi.org/10.1016/j.cej.2018.10.147

    Article  CAS  Google Scholar 

  • Bansal M, Ram B, Chauhan GS, Kaushik A (2018) L-Cysteine functionalized bagasse cellulose nanofibers for mercury(II) ions adsorption. Int J Biol Macromol 112:728–736

    CAS  PubMed  Google Scholar 

  • Batmaz R, Mohammed N, Zaman M, Minhas G, Berry RM, Tam KC (2014) Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes. Cellulose 21:1655–1665

    CAS  Google Scholar 

  • Bayramoğlu G, Yılmaz M, Şenel AÜ, Arıca MY (2008) Preparation of nanofibrous polymer grafted magnetic poly (GMA-MMA)-g-MAA beads for immobilization of trypsin via adsorption. Biochem Eng J 40:262–274

    Google Scholar 

  • Belhalfaoui B, Aziz A, Elandaloussi EH, Ouali MS, De Ménorval LC (2009) Succinate-bonded cellulose: a regenerable and powerful sorbent for cadmium-removal from spiked high-hardness groundwater. J Hazard Mater 169:831–837

    CAS  PubMed  Google Scholar 

  • Benmassaoud Y, Villaseñor MJ, Salghi R, Jodeh S, Algarra M, Zougagh M, Ríos Á (2017) Magnetic/non-magnetic argan press cake nanocellulose for the selective extraction of sudan dyes in food samples prior to the determination by capillary liquid chromatograpy. Talanta 166:63–69

    CAS  PubMed  Google Scholar 

  • Bereli N, Türkmen D, Köse K, Denizli A (2012) Glutamic acid containing supermacroporous poly (hydroxyethyl methacrylate) cryogel disks for UO22+ removal. Mater Sci Eng C 32:2052–2059

    CAS  Google Scholar 

  • Bhatnagar A, Sillanpää M (2010) Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—a review. Chem Eng J 157:277–296

    CAS  Google Scholar 

  • Bhatnagar A, Hogland W, Marques M, Sillanpää M (2013) An overview of the modification methods of activated carbon for its water treatment applications. Chem Eng J 219:499–511

    CAS  Google Scholar 

  • Bhatnagar A, Sillanpää M, Witek-Krowiak A (2015) Agricultural waste peels as versatile biomass for water purification—a review. Chem Eng J 270:244–271

    CAS  Google Scholar 

  • Bilgin E, Erol K, Köse K, Köse DA (2018) Use of nicotinamide decorated polymeric cryogels as heavy metal sweeper. Environ Sci Pollut Res 25:27614–27627

    CAS  Google Scholar 

  • Biyani MV, Foster EJ, Weder C (2013) Light-healable supramolecular nanocomposites based on modified cellulose nanocrystals. ACS Macro Lett 2:236–240

    CAS  PubMed  Google Scholar 

  • Bo S et al (2018) Flexible and porous cellulose aerogels/zeolitic imidazolate framework (ZIF-8) hybrids for adsorption removal of Cr(IV) from water. J Solid State Chem 262:135–141

    CAS  Google Scholar 

  • Brinkmann A, Chen M, Couillard M, Jakubek ZJ, Leng T, Johnston LJ (2016) Correlating cellulose nanocrystal particle size and surface area. Langmuir 32:6105–6114

    CAS  PubMed  Google Scholar 

  • Çavuş A, Baysal Z, Alkan H (2013) Preparation of poly (hydroxyethyl methacrylate) cryogels containing l-histidine for insulin recognition. Colloids Surf B 107:84–89

    Google Scholar 

  • Cazetta AL et al (2011) NaOH-activated carbon of high surface area produced from coconut shell: kinetics and equilibrium studies from the methylene blue adsorption. Chem Eng J 174:117–125

    CAS  Google Scholar 

  • Cervin NT, Aulin C, Larsson PT, Wågberg L (2012) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19:401–410

    CAS  Google Scholar 

  • Chang Y-C, Chang S-W, Chen D-H (2006) Magnetic chitosan nanoparticles: studies on chitosan binding and adsorption of Co(II) ions. React Funct Polym 66:335–341

    CAS  Google Scholar 

  • Chauhan GS, Dhiman SK, Guleria LK, Misra BN, Kaur I (2000) Polymers from renewable resources: kinetics of 4-vinyl pyridine radiochemical grafting onto cellulose extracted from pine needles. Radiat Phys Chem 58:181–190

    CAS  Google Scholar 

  • Chen J, Iwata H, Maekawa Y, Yoshida M, Tsubokawa N (2003) Grafting of polyethylene by γ-radiation grafting onto conductive carbon black and application as novel gas and solute sensors. Radiat Phys Chem 67:397–401

    CAS  Google Scholar 

  • Chen Y, Xu W, Liu W, Zeng G (2015) Responsiveness, swelling, and mechanical properties of PNIPA nanocomposite hydrogels reinforced by nanocellulose. J Mater Res 30:1797–1807

    CAS  Google Scholar 

  • Chenampulli S, Unnikrishnan G, Sujith A, Thomas S, Francis T (2013) Cellulose nano-particles from Pandanus: viscometric and crystallographic studies. Cellulose 20:429–438

    CAS  Google Scholar 

  • Chowdhury S, Balasubramanian R (2014) Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Adv Coll Interface Sci 204:35–56. https://doi.org/10.1016/j.cis.2013.12.005

    Article  CAS  Google Scholar 

  • Clarkson CM, Youngblood JP (2018) Dry-spinning of cellulose nanocrystal/polylactic acid composite fibers. Green Mater 6:6–14

    Google Scholar 

  • Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Biores Technol 97:1061–1085

    CAS  Google Scholar 

  • Çulha S, Armutcu C, Uzun L, Şenel S, Denizli A (2015) Synthesis of l-lysine imprinted cryogels for immunoglobulin G adsorption. Mater Sci Eng C 52:315–324

    Google Scholar 

  • da Silva Filho EC, de Melo JC, da Fonseca MG, Airoldi C (2009) Cation removal using cellulose chemically modified by a Schiff base procedure applying green principles. J Colloid Interface Sci 340:8–15

    PubMed  Google Scholar 

  • De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631

    Google Scholar 

  • Demirci S, Celebioglu A, Uyar T (2014) Surface modification of electrospun cellulose acetate nanofibers via RAFT polymerization for DNA adsorption. Carbohydr Polym 113:200–207

    CAS  PubMed  Google Scholar 

  • Donia AM, Atia AA, Abouzayed FI (2012) Preparation and characterization of nano-magnetic cellulose with fast kinetic properties towards the adsorption of some metal ions. Chem Eng J 191:22–30. https://doi.org/10.1016/j.cej.2011.08.034

    Article  CAS  Google Scholar 

  • Du H, Liu W, Zhang M, Si C, Zhang X, Li B (2019) Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr Polym 209:130–144. https://doi.org/10.1016/j.carbpol.2019.01.020

    Article  CAS  PubMed  Google Scholar 

  • Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227. https://doi.org/10.1016/j.mattod.2013.06.004

    Article  CAS  Google Scholar 

  • Dwivedi A, Singh B, Sharma S, Lokhandae R, Dubey N (2014) Ultra-performance liquid chromatography electrospray ionization–tandem mass spectrometry method for the simultaneous determination of itraconazole and hydroxy itraconazole in human plasma. J Pharm Anal 4:316–324

    CAS  PubMed  Google Scholar 

  • Erol K, Köse K (2017) Efficient polymeric material for separation of human hemoglobin. Artif Cells Nanomed Biotechnol 45:39–45

    CAS  PubMed  Google Scholar 

  • Erol K, Köse K, Köse DA, Sızır Ü, Tosun Satır İ, Uzun L (2016a) Adsorption of Victoria Blue R (VBR) dye on magnetic microparticles containing Fe(II)–Co(II) double salt. Desalin Water Treat 57:9307–9317

    CAS  Google Scholar 

  • Erol K, Köse K, Uzun L, Say R, Denizli A (2016b) Polyethyleneimine assisted-two-step polymerization to develop surface imprinted cryogels for lysozyme purification. Colloids Surf B 146:567–576

    CAS  Google Scholar 

  • Erol K, Uzunoglu A, Köse K, Sarıca B, Avcı E, Köse DA (2018) Synthesis and characterization of Ag+-decorated poly(glycidyl methacrylate) microparticle design for the adsorption of nucleic acids. J Chromatogr B 1081–1082:1–7. https://doi.org/10.1016/j.jchromb.2018.02.017

    Article  CAS  Google Scholar 

  • Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6:7764–7779

    CAS  PubMed  Google Scholar 

  • Fan M, Hu J, Cao R, Ruan W, Wei X (2018) A review on experimental design for pollutants removal in water treatment with the aid of artificial intelligence. Chemosphere 200:330–343

    CAS  PubMed  Google Scholar 

  • Fan L, Lu Y, Yang L-Y, Huang F, Ouyang X-k (2019) Fabrication of polyethylenimine-functionalized sodium alginate/cellulose nanocrystal/polyvinyl alcohol core–shell microspheres ((PVA/SA/CNC)@PEI) for diclofenac sodium adsorption. J Colloid Interface Sci 554:48–58. https://doi.org/10.1016/j.jcis.2019.06.099

    Article  CAS  PubMed  Google Scholar 

  • Fortunati E et al (2013) Ternary PVA nanocomposites containing cellulose nanocrystals from different sources and silver particles: part II. Carbohydr Polym 97:837–848

    CAS  PubMed  Google Scholar 

  • Foster EJ et al (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47:2609–2679

    CAS  PubMed  Google Scholar 

  • Freeman AI, Surridge BW, Matthews M, Stewart M, Haygarth PM (2018) New approaches to enhance pollutant removal in artificially aerated wastewater treatment systems. Sci Total Environ 627:1182–1194

    CAS  PubMed  Google Scholar 

  • Frka-Petesic B, Sugiyama J, Kimura S, Chanzy H, Maret G (2015) Negative diamagnetic anisotropy and birefringence of cellulose nanocrystals. Macromolecules 48:8844–8857

    CAS  Google Scholar 

  • Fuhrimann S et al (2016) Disease burden due to gastrointestinal pathogens in a wastewater system in Kampala. Uganda Microbial Risk Anal 4:16–28

    Google Scholar 

  • Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 22:545–567

    CAS  Google Scholar 

  • Garg KK, Prasad B (2017) Treatment of toxic pollutants of purified terephthalic acid waste water: a review. Environ Technol Innov 8:191–217

    Google Scholar 

  • Gautam D, Kumari S, Ram B, Chauhan GS, Chauhan K (2018) A new hemicellulose-based adsorbent for malachite green. J Environ Chem Eng 6:3889–3897

    CAS  Google Scholar 

  • George J, Sabapathi S (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goh P, Ismail A (2018) A review on inorganic membranes for desalination and wastewater treatment. Desalination 434:60–80

    CAS  Google Scholar 

  • González JA, Villanueva ME, Piehl LL, Copello GJ (2015) Development of a chitin/graphene oxide hybrid composite for the removal of pollutant dyes: adsorption and desorption study. Chem Eng J 280:41–48

    Google Scholar 

  • Gousse C, Chanzy H, Cerrada M, Fleury E (2004) Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer 45:1569–1575

    CAS  Google Scholar 

  • Gregoret LM, Rader SD, Fletterick RJ, Cohen FE (1991) Hydrogen bonds involving sulfur atoms in proteins. Proteins Struct Funct Bioinform 9:99–107

    CAS  Google Scholar 

  • Grishkewich N, Mohammed N, Tang J, Tam KC (2017) Recent advances in the application of cellulose nanocrystals. Curr Opin Colloid Interface Sci 29:32–45

    CAS  Google Scholar 

  • Gu H et al (2020) Magnetic nanocellulose–magnetite aerogel for easy oil adsorption. J Colloid Interface Sci 560:849–856. https://doi.org/10.1016/j.jcis.2019.10.084

    Article  CAS  PubMed  Google Scholar 

  • Guan Y et al (2019) Green one-step synthesis of ZnO/cellulose nanocrystal hybrids with modulated morphologies and superfast absorption of cationic dyes. Int J Biol Macromol 132:51–62. https://doi.org/10.1016/j.ijbiomac.2019.03.104

    Article  CAS  PubMed  Google Scholar 

  • Güçlü G, Gürdağ G, Özgümüş S (2003) Competitive removal of heavy metal ions by cellulose graft copolymers. J Appl Polym Sci 90:2034–2039

    Google Scholar 

  • Gupta V (2009) Application of low-cost adsorbents for dye removal—a review. J Environ Manag 90:2313–2342

    CAS  Google Scholar 

  • Habibi Y, Dufresne A (2008) Highly filled bionanocomposites from functionalized polysaccharide nanocrystals. Biomacromol 9:1974–1980

    CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    CAS  PubMed  Google Scholar 

  • Hameed B, Din AM, Ahmad A (2007) Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies. J Hazard Mater 141:819–825

    CAS  PubMed  Google Scholar 

  • Hartmann R et al (2016) Interactions between aminated cellulose nanocrystals and quartz: adsorption and wettability studies. Colloids Surf A 489:207–215

    CAS  Google Scholar 

  • Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4:2238–2244

    CAS  Google Scholar 

  • Hayashi N, Kondo T, Ishihara M (2005) Enzymatically produced nano-ordered short elements containing cellulose Iβ crystalline domains. Carbohydr Polym 61:191–197

    CAS  Google Scholar 

  • Ho Y-S, McKay G (2003) Sorption of dyes and copper ions onto biosorbents. Process Biochem 38:1047–1061

    CAS  Google Scholar 

  • Hokkanen S, Repo E, Sillanpää M (2013) Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose. Chem Eng J 223:40–47

    CAS  Google Scholar 

  • Hokkanen S, Repo E, Suopajärvi T, Liimatainen H, Niinimaa J, Sillanpää M (2014) Adsorption of Ni(II), Cu(II) and Cd(II) from aqueous solutions by amino modified nanostructured microfibrillated cellulose. Cellulose 21:1471–1487

    CAS  Google Scholar 

  • Hokkanen S, Bhatnagar A, Sillanpää M (2016) A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res 91:156–173

    CAS  PubMed  Google Scholar 

  • Hu Z-H, Omer AM, Ouyang Xk YuD (2018a) Fabrication of carboxylated cellulose nanocrystal/sodium alginate hydrogel beads for adsorption of Pb(II) from aqueous solution. Int J Biol Macromol 108:149–157

    CAS  PubMed  Google Scholar 

  • Hu Z-H, Wang YF, Omer AM, Ouyang XK (2018b) Fabrication of ofloxacin imprinted polymer on the surface of magnetic carboxylated cellulose nanocrystals for highly selective adsorption of fluoroquinolones from water. Int J Biol Macromol 107:453–462

    CAS  PubMed  Google Scholar 

  • Hu D, Huang H, Jiang R, Wang N, Xu H, Wang Y-G, Ouyang X-K (2019a) Adsorption of diclofenac sodium on bilayer amino-functionalized cellulose nanocrystals/chitosan composite. J Hazardous Mater 369:483–493. https://doi.org/10.1016/j.jhazmat.2019.02.057

    Article  CAS  Google Scholar 

  • Hu D, Jiang R, Wang N, Xu H, Wang Y-G, Ouyang X-k (2019b) Adsorption of diclofenac sodium on bilayer amino-functionalized cellulose nanocrystals/chitosan composite. J Hazard Mater 369:483–493

    CAS  PubMed  Google Scholar 

  • Huang W, Wang Y, Huang Z, Wang X, Chen L, Zhang Y, Zhang L (2018) On-demand dissolvable self-healing hydrogel based on carboxymethyl chitosan and cellulose nanocrystal for deep partial thickness burn wound healing. ACS Appl Mater Interfaces 10:41076–41088

    CAS  PubMed  Google Scholar 

  • Ishak NS, Ku Ishak KM, Bustami Y, Rokiah H (2019) Evaluation of cellulose nanocrystals (CNCs) as protein adsorbent in stick water. Mater Today Proc 17:516–524. https://doi.org/10.1016/j.matpr.2019.06.330

    Article  CAS  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85

    CAS  PubMed  Google Scholar 

  • Jain A, Gupta V, Bhatnagar A (2003) Utilization of industrial waste products as adsorbents for the removal of dyes. J Hazard Mater 101:31–42

    CAS  PubMed  Google Scholar 

  • Jiang Z, Miao J, Yu Y, Zhang L (2016) Effective preparation of bamboo cellulose fibers in quaternary ammonium/DMSO solvent. BioResources 11:4536–4549

    CAS  Google Scholar 

  • Jiang N, Shang R, Heijman SG, Rietveld LC (2018) High-silica zeolites for adsorption of organic micro-pollutants in water treatment: a review. Water Res 144:145–161

    CAS  PubMed  Google Scholar 

  • Jin L, Li W, Xu Q, Sun Q (2015) Amino-functionalized nanocrystalline cellulose as an adsorbent for anionic dyes. Cellulose 22:2443–2456. https://doi.org/10.1007/s10570-015-0649-4

    Article  CAS  Google Scholar 

  • Johari K, Saman N, Song ST, Mat H, Stuckey DC (2013) Utilization of coconut milk processing waste as a low-cost mercury sorbent. Ind Eng Chem Res 52:15648–15657

    CAS  Google Scholar 

  • Jonoobi M, Ashori A, Siracusa V (2019) Characterization and properties of polyethersulfone/modified cellulose nanocrystals nanocomposite membranes. Polym Testing 76:333–339. https://doi.org/10.1016/j.polymertesting.2019.03.039

    Article  CAS  Google Scholar 

  • Jorfi M, Foster EJ (2015) Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci 132:41719 (1–19)

    Google Scholar 

  • Júnior OK, Gurgel LVA, Gil LF (2010) Removal of Ca(II) and Mg(II) from aqueous single metal solutions by mercerized cellulose and mercerized sugarcane bagasse grafted with EDTA dianhydride (EDTAD). Carbohydr Polym 79:184–191

    Google Scholar 

  • Kalia S, Dufresne A, Cherian BM, Kaith B, Avérous L, Njuguna J, Nassiopoulos E (2011) Cellulose-based bio-and nanocomposites: a review. Int J Polym Sci 2011

  • Kamel S, Ali N, Jahangir K, Shah S, El-Gendy A (2008) Pharmaceutical significance of cellulose: a review. Express Polym Lett 2:758–778

    CAS  Google Scholar 

  • Karim Z, Mathew AP, Grahn M, Mouzon J, Oksman K (2014) Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water. Carbohydr Polym 112:668–676. https://doi.org/10.1016/j.carbpol.2014.06.048

    Article  CAS  PubMed  Google Scholar 

  • Karim Z, Claudpierre S, Grahn M, Oksman K, Mathew AP (2016) Nanocellulose based functional membranes for water cleaning: tailoring of mechanical properties, porosity and metal ion capture. J Membr Sci 514:418–428

    CAS  Google Scholar 

  • Keng P-S, Lee S-L, Ha S-T, Hung Y-T, Ong S-T (2013) Cheap materials to clean heavy metal polluted waters. In: Lichtfouse E, Schwarzbauer J, Robert D (eds) Green materials for energy, products and depollution. Springer, Dordrecht, pp 335–414. https://doi.org/10.1007/978-94-007-6836-9_8

    Chapter  Google Scholar 

  • Khan A, Wang X, Gul K, Khuda F, Aly Z, Elseman A (2018) Microwave-assisted spent black tea leaves as cost-effective and powerful green adsorbent for the efficient removal of Eriochrome black T from aqueous solutions. Egypt J Basic Appl Sci 5:171–182

    Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    CAS  Google Scholar 

  • Kloser E, Gray DG (2010) Surface grafting of cellulose nanocrystals with poly(ethylene oxide) in aqueous media. Langmuir 26:13450–13456

    CAS  PubMed  Google Scholar 

  • Korhonen JT, Kettunen M, Ras RH, Ikkala O (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces 3:1813–1816

    CAS  PubMed  Google Scholar 

  • Köse K (2016) Nucleotide incorporated magnetic microparticles for isolation of DNA. Process Biochem 51:1644–1649

    Google Scholar 

  • Köse K, Denizli A (2013) Poly(hydroxyethyl methacrylate) based magnetic nanoparticles for lysozyme purification from chicken egg white. Artif Cells Nanomed Biotechnol 41:13–20

    PubMed  Google Scholar 

  • Köse K, Köse DA (2017) Removal of DDE by exploiting the alcoho–phobic interactions. Environ Sci Pollut Res 24:9187–9193. https://doi.org/10.1007/s11356-017-8576-6

    Article  CAS  Google Scholar 

  • Köse K, Uzun L (2016) PolyGuanine methacrylate cryogels for ribonucleic acid purification. J Sep Sci 39:1998–2005

    PubMed  Google Scholar 

  • Köse K, Erol K, Emniyet AA, Köse DA, Avcı GA, Uzun L (2015) Fe (II)–Co(II) double salt incorporated magnetic hydrophobic microparticles for Invertase adsorption. Appl Biochem Biotechnol 177:1025–1039

    PubMed  Google Scholar 

  • Kozak J, Gutowski J, Kozak M, Wieczorek M, Kościelniak P (2010) New method for simultaneous determination of Fe(II) and Fe(III) in water using flow injection technique. Anal Chim Acta 668:8–12. https://doi.org/10.1016/j.aca.2010.02.002

    Article  CAS  PubMed  Google Scholar 

  • Kumar A et al (2017) Effect of crosslinking functionality on microstructure, mechanical properties, and in vitro cytocompatibility of cellulose nanocrystals reinforced poly (vinyl alcohol)/sodium alginate hybrid scaffolds. Int J Biol Macromol 95:962–973

    CAS  PubMed  Google Scholar 

  • Kurecic M, Smole MS (2012) Polymer nanocomposite hydrogels for water purification. In: Nanocomposites: new trends and developments, pp 161–185

    Google Scholar 

  • Lam E, Male KB, Chong JH, Leung AC, Luong JH (2012) Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends Biotechnol 30:283–290

    CAS  PubMed  Google Scholar 

  • Lee K-Y, Aitomäki Y, Berglund LA, Oksman K, Bismarck A (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Compos Sci Technol 105:15–27

    Google Scholar 

  • Li Q, Chai L, Wang Q, Yang Z, Yan H, Wang Y (2010) Fast esterification of spent grain for enhanced heavy metal ions adsorption. Biores Technol 101:3796–3799

    CAS  Google Scholar 

  • Li J et al (2012a) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr Polym 90:1609–1613

    CAS  PubMed  Google Scholar 

  • Li X, Wang Y, Yang X, Chen J, Fu H, Cheng T (2012b) Conducting polymers in environmental analysis. TrAC Trends Anal Chem 39:163–179

    CAS  Google Scholar 

  • Li Q, McGinnis S, Sydnor C, Wong A, Renneckar S (2013) Nanocellulose life cycle assessment. ACS Sustain Chem Eng 1:919–928

    CAS  Google Scholar 

  • Li Y, Bai P, Yan Y, Yan W, Shi W, Xu R (2019) Removal of Zn2+, Pb2+, Cd2+, and Cu2+ from aqueous solution by synthetic clinoptilolite. Microporous Mesoporous Mater 273:203–211

    CAS  Google Scholar 

  • Lin N, Bruzzese CC, Dufresne A (2012a) TEMPO-oxidized nanocellulose participating as crosslinking aid for alginate-based sponges. ACS Appl Mater Interfaces 4:4948–4959

    CAS  PubMed  Google Scholar 

  • Lin N, Huang J, Dufresne A (2012b) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4:3274–3294

    CAS  PubMed  Google Scholar 

  • Lin N, Gèze A, Wouessidjewe D, Huang J, Dufresne A (2016) Biocompatible double-membrane hydrogels from cationic cellulose nanocrystals and anionic alginate as complexing drugs codelivery. ACS Appl Mater Interfaces 8:6880–6889

    CAS  PubMed  Google Scholar 

  • Liu H, Yang F, Zheng Y, Kang J, Qu J, Chen JP (2011) Improvement of metal adsorption onto chitosan/Sargassum sp. composite sorbent by an innovative ion-imprint technology. Water Res 45:145–154

    CAS  PubMed  Google Scholar 

  • Liu L, Lin Y, Liu Y, Zhu H, He Q (2013) Removal of methylene blue from aqueous solutions by sewage sludge based granular activated carbon: adsorption equilibrium, kinetics, and thermodynamics. J Chem Eng Data 58:2248–2253

    CAS  Google Scholar 

  • Liu P, Sehaqui H, Tingaut P, Wichser A, Oksman K, Mathew AP (2014) Cellulose and chitin nanomaterials for capturing silver ions (Ag+) from water via surface adsorption. Cellulose 21:449–461

    CAS  Google Scholar 

  • Liu P, Borrell PF, Božič M, Kokol V, Oksman K, Mathew AP (2015a) Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+, Cu2+ and Fe3+ from industrial effluents. J Hazard Mater 294:177–185

    CAS  PubMed  Google Scholar 

  • Liu Y, Jiang Y, Hu M, Li S, Zhai Q (2015b) Removal of triphenylmethane dyes by calcium carbonate–lentinan hierarchical mesoporous hybrid materials. Chem Eng J 273:371–380

    CAS  Google Scholar 

  • Liu C, Jin R-N, Ouyang X-k, Wang Y-G (2017) Adsorption behavior of carboxylated cellulose nanocrystal–polyethyleneimine composite for removal of Cr(VI) ions. Appl Surf Sci 408:77–87. https://doi.org/10.1016/j.apsusc.2017.02.265

    Article  CAS  Google Scholar 

  • Lombardo S, Eyley S, Schütz C, van Gorp H, Rosenfeldt S, Van den Mooter G, Thielemans W (2017) Thermodynamic study of the interaction of bovine serum albumin and amino acids with cellulose nanocrystals. Langmuir 33:5473–5481. https://doi.org/10.1021/acs.langmuir.7b00710

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Gibb SW (2008) Copper removal from wastewater using spent-grain as biosorbent. Biores Technol 99:1509–1517

    CAS  Google Scholar 

  • Lu J, Jin R-N, Liu C, Wang Y-F, Ouyang X-k (2016) Magnetic carboxylated cellulose nanocrystals as adsorbent for the removal of Pb(II) from aqueous solution. Int J Biol Macromol 93:547–556. https://doi.org/10.1016/j.ijbiomac.2016.09.004

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Lei X, Xie X, Yu B, Cai N, Yu F (2016) Adsorptive removal of lead from water by the effective and reusable magnetic cellulose nanocomposite beads entrapping activated bentonite. Carbohydr Polym 151:640–648. https://doi.org/10.1016/j.carbpol.2016.06.003

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Burger C, Hsiao BS, Chu B (2011a) Nanofibrous microfiltration membrane based on cellulose nanowhiskers. Biomacromol 13:180–186

    Google Scholar 

  • Ma H, Hsiao BS, Chu B (2011b) Ultrafine cellulose nanofibers as efficient adsorbents for removal of UO22+ in water. ACS Macro Lett 1:213–216

    PubMed  Google Scholar 

  • Ma Q, Hu D, Wang L (2016) Preparation and physical properties of tara gum film reinforced with cellulose nanocrystals. Int J Biol Macromol 86:606–612

    CAS  PubMed  Google Scholar 

  • Maaloul N, Oulego P, Rendueles M, Ghorbal A, Díaz M (2017) Novel biosorbents from almond shells: characterization and adsorption properties modeling for Cu(II) ions from aqueous solutions. J Environ Chem Eng 5:2944–2954. https://doi.org/10.1016/j.jece.2017.05.037

    Article  CAS  Google Scholar 

  • Maatar W, Alila S, Boufi S (2013) Cellulose based organogel as an adsorbent for dissolved organic compounds. Ind Crops Prod 49:33–42

    CAS  Google Scholar 

  • Maftuleac AN (2013) Adsorption from solutions in a centrifugal field and a device for studying it. Instrum Exp Tech 56:371–372. https://doi.org/10.1134/S0020441213030093

    Article  Google Scholar 

  • Mahfoudhi N, Boufi S (2017) Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review. Cellulose 24:1171–1197

    CAS  Google Scholar 

  • Margaretha Y, Batafor J, Suseno S, Nurjanah N (2014) The treatments combination (centrifugation and adsorption) for reducing primary-secondary oxidation products of sardine oil. Glob J Biol Agric Health Sci 3:226–230

    Google Scholar 

  • Marques SC, Mestre AS, Machuqueiro M, Gotvajn AŽ, Marinšek M, Carvalho AP (2018) Apple tree branches derived activated carbons for the removal of β-blocker atenolol. Chem Eng J 345:669–678

    CAS  Google Scholar 

  • Martínez-Huitle CA, Panizza M (2018) Electrochemical oxidation of organic pollutants for wastewater treatment. Curr Opin Electrochem 11:62–71

    Google Scholar 

  • Matos Ruiz M, Cavaille J, Dufresne A, Gerard J, Graillat C (2000) Processing and characterization of new thermoset nanocomposites based on cellulose whiskers. Compos Interfaces 7:117–131

    Google Scholar 

  • Mauricio MR, da Costa PG, Haraguchi SK, Guilherme MR, Muniz EC, Rubira AF (2015) Synthesis of a microhydrogel composite from cellulose nanowhiskers and starch for drug delivery. Carbohydr Polym 115:715–722

    CAS  PubMed  Google Scholar 

  • Memmedova T, Armutcu C, Uzun L, Denizli A (2015) Polyglycidyl methacrylate based immunoaffinity cryogels for insulin adsorption. Mater Sci Eng C 52:178–185

    CAS  Google Scholar 

  • Mohammed N, Grishkewich N, Berry RM, Tam KC (2015) Cellulose nanocrystal–alginate hydrogel beads as novel adsorbents for organic dyes in aqueous solutions. Cellulose 22:3725–3738

    CAS  Google Scholar 

  • Mohammed N, Grishkewich N, Waeijen HA, Berry RM, Tam KC (2016) Continuous flow adsorption of methylene blue by cellulose nanocrystal–alginate hydrogel beads in fixed bed columns. Carbohydr Polym 136:1194–1202

    CAS  PubMed  Google Scholar 

  • Mondal S (2017) Preparation, properties and applications of nanocellulosic materials. Carbohydr Polym 163:301–316. https://doi.org/10.1016/j.carbpol.2016.12.050

    Article  CAS  PubMed  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    CAS  PubMed  Google Scholar 

  • Moon RJ, Schueneman GT, Simonsen J (2016) Overview of cellulose nanomaterials, their capabilities and applications. JOM 68:2383–2394

    CAS  Google Scholar 

  • Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). Langmuir 25:8280–8286

    CAS  PubMed  Google Scholar 

  • Nair V, Vinu R (2016) Peroxide-assisted microwave activation of pyrolysis char for adsorption of dyes from wastewater. Biores Technol 216:511–519

    CAS  Google Scholar 

  • Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 93:2–25

    CAS  Google Scholar 

  • Nekouei F, Nekouei S, Kargarzadeh H (2018) Enhanced adsorption and catalytic oxidation of ciprofloxacin on hierarchical CuS hollow nanospheres@N-doped cellulose nanocrystals hybrid composites: kinetic and radical generation mechanism studies. Chem Eng J 335:567–578. https://doi.org/10.1016/j.cej.2017.10.179

    Article  CAS  Google Scholar 

  • Olivera S, Muralidhara HB, Venkatesh K, Guna VK, Gopalakrishna K, Kumar Y (2016) Potential applications of cellulose and chitosan nanoparticles/composites in wastewater treatment: a review. Carbohydr Polym 153:600–618

    CAS  PubMed  Google Scholar 

  • Orona-Návar C et al (2018) Adsorptive removal of emerging pollutants from groundwater by using modified titanate nanotubes. J Environ Chem Eng 6:5332–5340

    Google Scholar 

  • Patel DK, Dutta SD, Lim K-T (2019) Nanocellulose-based polymer hybrids and their emerging applications in biomedical engineering and water purification RSC. Advances 9:19143–19162

    CAS  Google Scholar 

  • Peng BL, Dhar N, Liu H, Tam K (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective The. Can J Chem Eng 89:1191–1206

    CAS  Google Scholar 

  • Peng Y, Gardner DJ, Han Y, Cai Z, Tshabalala MA (2013) Influence of drying method on the surface energy of cellulose nanofibrils determined by inverse gas chromatography. J Colloid Interface Sci 405:85–95

    CAS  PubMed  Google Scholar 

  • Pospiskova K, Safarik I (2013) Low-cost, easy-to-prepare magnetic chitosan microparticles for enzymes immobilization. Carbohydr Polym 96:545–548

    CAS  PubMed  Google Scholar 

  • Pourfadakari S, Jorfi S, Ahmadi M, Takdastan A (2017) Experimental data on adsorption of Cr(VI) from aqueous solution using nanosized cellulose fibers obtained from rice husk. Data Brief 15:887–895. https://doi.org/10.1016/j.dib.2017.10.043

    Article  PubMed  PubMed Central  Google Scholar 

  • Putro JN, Kurniawan A, Ismadji S, Ju Y-H (2017) Nanocellulose based biosorbents for wastewater treatment: study of isotherm, kinetic, thermodynamic and reusability Environmental Nanotechnology. Monit Manag 8:134–149. https://doi.org/10.1016/j.enmm.2017.07.002

    Article  Google Scholar 

  • Qu X, Alvarez PJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946

    CAS  PubMed  Google Scholar 

  • Rathod M, Haldar S, Basha S (2015) Nanocrystalline cellulose for removal of tetracycline hydrochloride from water via biosorption: equilibrium, kinetic and thermodynamic studies. Ecol Eng 84:240–249. https://doi.org/10.1016/j.ecoleng.2015.09.031

    Article  Google Scholar 

  • Reddy PAK, Reddy PVL, Kwon E, Kim K-H, Akter T, Kalagara S (2016) Recent advances in photocatalytic treatment of pollutants in aqueous media. Environ Int 91:94–103

    CAS  PubMed  Google Scholar 

  • Renault F, Morin-Crini N, Gimbert F, Badot P-M, Crini G (2008) Cationized starch-based material as a new ion-exchanger adsorbent for the removal of CI Acid Blue 25 from aqueous solutions. Biores Technol 99:7573–7586

    CAS  Google Scholar 

  • Rojanarata T, Plianwong S, Su-uta K, Opanasopit P, Ngawhirunpat T (2013) Electrospun cellulose acetate nanofibers as thin layer chromatographic media for eco-friendly screening of steroids adulterated in traditional medicine and nutraceutical products. Talanta 115:208–213

    CAS  PubMed  Google Scholar 

  • Roman M (2015) Toxicity of cellulose nanocrystals: a review. Ind Biotechnol 11:25–33

    CAS  Google Scholar 

  • Ruiz-Palomero C, Soriano ML, Valcárcel M (2015) β-Cyclodextrin decorated nanocellulose: a smart approach towards the selective fluorimetric determination of danofloxacin in milk samples. Analyst 140:3431–3438

    CAS  PubMed  Google Scholar 

  • Ruiz-Palomero C, Soriano ML, Valcarcel M (2017) Nanocellulose as analyte and analytical tool: opportunities and challenges. Trends Anal Chem 87:1–18

    CAS  Google Scholar 

  • Rusli R, Eichhorn SJ (2008) Determination of the stiffness of cellulose nanowhiskers and the fiber-matrix interface in a nanocomposite using Raman spectroscopy. Appl Phys Lett 93:033111

    Google Scholar 

  • Saatçilar Ö, Şatiroǧlu N, Bektaş S, Genç Ö, Denizli A (2002) Packed-bed columns with dye-affinity microbeads for removal of heavy metal ions from aquatic systems. React Funct Polym 50:41–48

    Google Scholar 

  • Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989

    CAS  PubMed  Google Scholar 

  • Saito T, Isogai A (2005) Ion-exchange behavior of carboxylate groups in fibrous cellulose oxidized by the TEMPO-mediated system. Carbohydr Polym 61:183–190

    CAS  Google Scholar 

  • Salgot M, Folch M (2018) Wastewater treatment and water reuse. Curr Opin Environ Sci Health 2:64–74

    Google Scholar 

  • Sarıca B, Köse K, Uzunoğlu A, Erol K, Köse DA (2018) Isolation of aspartic acid using novel poly(2-hydroxyethyl methacrylate-N-methacryloyl-(l)-lysine). Cryogels Chromatogr 81:127–137

    Google Scholar 

  • Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromol 12:3638–3644

    CAS  Google Scholar 

  • Sehaqui H, de Larraya UP, Liu P, Pfenninger N, Mathew AP, Zimmermann T, Tingaut P (2014) Enhancing adsorption of heavy metal ions onto biobased nanofibers from waste pulp residues for application in wastewater treatment. Cellulose 21:2831–2844

    CAS  Google Scholar 

  • Sehaqui H, Kulasinski K, Pfenninger N, Zimmermann T, Tingaut P (2016a) Highly carboxylated cellulose nanofibers via succinic anhydride esterification of wheat fibers and facile mechanical disintegration. Biomacromol 18:242–248

    Google Scholar 

  • Sehaqui H, Mautner A, Perez de Larraya U, Pfenninger N, Tingaut P, Zimmermann T (2016b) Cationic cellulose nanofibers from waste pulp residues and their nitrate, fluoride, sulphate and phosphate adsorption properties. Carbohydr Polym 135:334–340. https://doi.org/10.1016/j.carbpol.2015.08.091

    Article  CAS  PubMed  Google Scholar 

  • Shak KPY, Pang YL, Mah SK (2018) Nanocellulose: recent advances and its prospects in environmental remediation. Beilstein J Nanotechnol 9:2479–2498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shanmugarajah B, Chew IM, Mubarak NM, Choong TS, Yoo C, Tan K (2018) Valorization of palm oil agro-waste into cellulose biosorbents for highly effective textile effluent remediation. J Clean Prod. https://doi.org/10.1016/j.jclepro.2018.10.342

    Article  Google Scholar 

  • Sharma P, Kaur H, Sharma M, Sahore V (2011) A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste. Environ Monit Assess 183:151–195

    CAS  PubMed  Google Scholar 

  • Shen W, Chen S, Shi S, Li X, Zhang X, Hu W, Wang H (2009) Adsorption of Cu(II) and Pb(II) onto diethylenetriamine-bacterial cellulose. Carbohydr Polym 75:110–114

    CAS  Google Scholar 

  • Singh K, Arora JK, Sinha TJM, Srivastava S (2014) Functionalization of nanocrystalline cellulose for decontamination of Cr(III) and Cr(VI) from aqueous system: computational modeling approach. Clean Technol Environ Policy 16:1179–1191

    CAS  Google Scholar 

  • Song K, Xu H, Xu L, Xie K, Yang Y (2017) Cellulose nanocrystal-reinforced keratin bioadsorbent for effective removal of dyes from aqueous solution. Biores Technol 232:254–262. https://doi.org/10.1016/j.biortech.2017.01.070

    Article  CAS  Google Scholar 

  • Spier VC, Sierakowski MR, Reed WF, de Freitas RA (2017) Polysaccharide depolymerization from TEMPO-catalysis: effect of TEMPO concentration. Carbohydr Polym 170:140–147. https://doi.org/10.1016/j.carbpol.2017.04.064

    Article  CAS  PubMed  Google Scholar 

  • Sultan S, Mathew AP (2018) 3D printed scaffolds with gradient porosity based on a cellulose nanocrystal hydrogel. Nanoscale 10:4421–4431

    CAS  PubMed  Google Scholar 

  • Suman KardamA, Gera M, Jain V (2015) A novel reusable nanocomposite for complete removal of dyes, heavy metals and microbial load from water based on nanocellulose and silver nano-embedded pebbles. Environ Technol 36:706–714

    CAS  PubMed  Google Scholar 

  • Suopajärvi T, Liimatainen H, Karjalainen M, Upola H, Niinimäki J (2015) Lead adsorption with sulfonated wheat pulp nanocelluloses. J Water Process Eng 5:136–142

    Google Scholar 

  • Supramaniam J, Adnan R, Kaus NHM, Bushra R (2018) Magnetic nanocellulose alginate hydrogel beads as potential drug delivery system. Int J Biol Macromol 118:640–648

    CAS  PubMed  Google Scholar 

  • Tabar IB, Zhang X, Youngblood JP, Mosier NS (2017) Production of cellulose nanofibers using phenolic enhanced surface oxidation. Carbohydr Polym 174:120–127

    Google Scholar 

  • Taleb K, Markovski J, Veličković Z, Rusmirović J, Rančić M, Pavlović V, Marinković A (2016) Arsenic removal by magnetite-loaded amino modified nano/microcellulose adsorbents: Effect of functionalization and media size Arabian. J Chem

  • Tang L, Huang B, Lu Q, Wang S, Ou W, Lin W, Chen X (2013) Ultrasonication-assisted manufacture of cellulose nanocrystals esterified with acetic acid. Biores Technol 127:100–105

    CAS  Google Scholar 

  • Tang J, Song Y, Zhao F, Spinney S, da Silva BernardesJ, Tam KC (2019) Compressible cellulose nanofibril (CNF) based aerogels produced via a bio-inspired strategy for heavy metal ion and dye removal. Carbohydr Polym 208:404–412. https://doi.org/10.1016/j.carbpol.2018.12.079

    Article  CAS  PubMed  Google Scholar 

  • Teng W, Bai N, Chen Z, Shi J, Fan J, Zhang W-x (2018) Hierarchically porous carbon derived from metal–organic frameworks for separation of aromatic pollutants. Chem Eng J 346:388–396

    CAS  Google Scholar 

  • Teodosiu C, Gilca A-F, Barjoveanu G, Fiore S (2018) Emerging pollutants removal through advanced drinking water treatment: a review on processes and environmental performances assessment. J Clean Prod 197:1210–1221

    CAS  Google Scholar 

  • Thambiraj S, Sharmila G, Shankaran DR (2018) Green adsorbents from solid wastes for water purification application. Mater Today Proc 5:16675–16683

    CAS  Google Scholar 

  • Thomas B, Raj MC, Joy J, Moores A, Drisko GL, Cm Sanchez (2018) Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem Rev 118:11575–11625

    CAS  PubMed  Google Scholar 

  • Tingaut P, Zimmermann T, Sèbe G (2012) Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials. J Mater Chem 22:20105–20111

    CAS  Google Scholar 

  • Unuabonah EI, Adebowale KO, Dawodu FA (2008) Equilibrium, kinetic and sorber design studies on the adsorption of Aniline blue dye by sodium tetraborate-modified Kaolinite clay adsorbent. J Hazard Mater 157:397–409

    CAS  PubMed  Google Scholar 

  • Uzun L, Türkmen D, Yılmaz E, Bektaş S, Denizli A (2008) Cysteine functionalized poly (hydroxyethyl methacrylate) monolith for heavy metal removal. Colloids Surf A 330:161–167

    CAS  Google Scholar 

  • Vartiainen J et al (2011) Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose. Cellulose 18:775–786

    CAS  Google Scholar 

  • Voisin H, Bergström L, Liu P, Mathew PA (2017) Nanocellulose-based materials for water purification. Nanomaterials. https://doi.org/10.3390/nano7030057

    Article  PubMed  PubMed Central  Google Scholar 

  • Volesky B (2007) Biosorption and me. Water Res 41:4017–4029

    CAS  PubMed  Google Scholar 

  • Walker C (2012) Thinking small is leading to big changes-nanotechnology is fast becoming a game changer for the pulp and paper industry. Paper 360:8–13

    Google Scholar 

  • Wang N, Jin R-N, Omer A, Ouyang X-k (2017) Adsorption of Pb(II) from fish sauce using carboxylated cellulose nanocrystal: isotherm, kinetics, and thermodynamic studies. Int J Biol Macromol 102:232–240

    CAS  PubMed  Google Scholar 

  • Wang H, Wang B, Li J, Zhu T (2019) Adsorption equilibrium and thermodynamics of acetaldehyde/acetone on activated carbon. Sep Purif Technol 209:535–541

    CAS  Google Scholar 

  • Wei C-H, Zhang X-X, Ren Y, Yu X-B (2011) Biomimetic adsorbents: enrichment of trace amounts of organic contaminants (TAOCs) in aqueous solution. In: Biomimetic based applications. IntechOpen

  • Winzen S, Koynov K, Landfester K, Mohr K (2016) Fluorescence labels may significantly affect the protein adsorption on hydrophilic nanomaterials. Colloids Surf B 147:124–128. https://doi.org/10.1016/j.colsurfb.2016.07.057

    Article  CAS  Google Scholar 

  • Wu M-B, Zhang C, Pi J-K, Liu C, Yang J, Xu Z-K (2019) Cellulose nanocrystals as anti-oil nanomaterials for separating crude oil from aqueous emulsions and mixtures. J Mater Chem A 7:7033–7041

    CAS  Google Scholar 

  • Yang R, Tan H, Wei F, Wang S (2008) Peroxidase conjugate of cellulose nanocrystals for the removal of chlorinated phenolic compounds in aqueous solution. Biotechnology 7:233–241

    CAS  Google Scholar 

  • Yang X, Liu H, Han F, Jiang S, Liu L, Xia Z (2017) Fabrication of cellulose nanocrystal from Carex meyeriana Kunth and its application in the adsorption of methylene blue. Carbohydr Polym 175:464–472

    CAS  PubMed  Google Scholar 

  • Yao T, Guo S, Zeng C, Wang C, Zhang L (2015) Investigation on efficient adsorption of cationic dyes on porous magnetic polyacrylamide microspheres. J Hazard Mater 292:90–97

    CAS  PubMed  Google Scholar 

  • Ye Y et al (2018) A critical review on ammonium recovery from wastewater for sustainable wastewater management. Biores Technol 268:749–758

    CAS  Google Scholar 

  • Yilmaz F, Kose K, Sari MM, Demirel G, Uzun L, Denizli A (2013) Bioinspired surface modification of poly (2-hydroxyethyl methacrylate) based microbeads via oxidative polymerization of dopamine. Colloids Surf B 109:176–182

    CAS  Google Scholar 

  • Yu X, Tong S, Ge M, Wu L, Zuo J, Cao C, Song W (2013) Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals. J Environ Sci 25:933–943

    CAS  Google Scholar 

  • Yuan G et al (2017) Cyclodextrin functionalized cellulose nanofiber composites for the faster adsorption of toluene from aqueous solution. J Taiwan Inst Chem Eng 70:352–358. https://doi.org/10.1016/j.jtice.2016.10.028

    Article  CAS  Google Scholar 

  • Yue X, Huang J, Jiang F, Lin H, Chen Y (2019) Synthesis and characterization of cellulose-based adsorbent for removal of anionic and cationic dyes. J Eng Fibers Fabr 14:1558925019828194. https://doi.org/10.1177/1558925019828194

    Article  Google Scholar 

  • Yurkshtovich T, Zimnitski D, Bychkovski P (2004) Effect of structural and electrolytic properties of carboxyl-containing cellulose cationites on the sorption of cephalexin from aqueous solutions. Colloid J 66:239–244

    CAS  Google Scholar 

  • Zadeh MHB, Shahdadi H (2015) Nanocellulose coated with various free fatty acids can adsorb fumonisin B1, and decrease its toxicity. Colloids Surf B 134:26–30

    CAS  Google Scholar 

  • Zhang A, Asakura T, Uchiyama G (2003) The adsorption mechanism of uranium(VI) from seawater on a macroporous fibrous polymeric adsorbent containing amidoxime chelating functional group. React Funct Polym 57:67–76

    CAS  Google Scholar 

  • Zhang Z, Sèbe G, Rentsch D, Zimmermann T, Tingaut P (2014) Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26:2659–2668

    CAS  Google Scholar 

  • Zhang Q, Hu J, Lee D-J (2016) Microbial fuel cells as pollutant treatment units: research updates. Biores Technol 217:121–128

    CAS  Google Scholar 

  • Zhang S et al (2017) Rice husks as a sustainable silica source for hierarchical flower-like metal silicate architectures assembled into ultrathin nanosheets for adsorption and catalysis. J Hazard Mater 321:92–102

    CAS  PubMed  Google Scholar 

  • Zhao X, Zhang G, Jia Q, Zhao C, Zhou W, Li W (2011) Adsorption of Cu(II), Pb(II), Co(II), Ni(II), and Cd(II) from aqueous solution by poly (aryl ether ketone) containing pendant carboxyl groups (PEK-L): equilibrium, kinetics, and thermodynamics. Chem Eng J 171:152–158

    CAS  Google Scholar 

  • Zhou D, Zhang L, Guo S (2005) Mechanisms of lead biosorption on cellulose/chitin beads. Water Res 39:3755–3762

    CAS  PubMed  Google Scholar 

  • Zhou L, Jin J, Liu Z, Liang X, Shang C (2011) Adsorption of acid dyes from aqueous solutions by the ethylenediamine-modified magnetic chitosan nanoparticles. J Hazard Mater 185:1045–1052

    CAS  PubMed  Google Scholar 

  • Zhou C, Wu Q, Lei T, Negulescu II (2014) Adsorption kinetic and equilibrium studies for methylene blue dye by partially hydrolyzed polyacrylamide/cellulose nanocrystal nanocomposite hydrogels. Chem Eng J 251:17–24

    CAS  Google Scholar 

  • Zhou H et al (2017) Facile preparation of 3D GO/CNCs composite with adsorption performance towards [BMIM][Cl] from aqueous solution. J Hazard Mater 337:27–33

    CAS  PubMed  Google Scholar 

  • Zhu G, Chen Z, Wu B, Lin N (2019) Dual-enhancement effect of electrostatic adsorption and chemical crosslinking for nanocellulose-based aerogels. Ind Crops Prod 139:111580. https://doi.org/10.1016/j.indcrop.2019.111580

    Article  CAS  Google Scholar 

  • Zimnitsky DS, Yurkshtovich TL, Bychkovsky PM (2005) Multilayer adsorption of amino acids on oxidized cellulose. J Colloid Interface Sci 285:502–508

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazım Köse.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Köse, K., Mavlan, M. & Youngblood, J.P. Applications and impact of nanocellulose based adsorbents. Cellulose 27, 2967–2990 (2020). https://doi.org/10.1007/s10570-020-03011-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03011-1

Keywords

Navigation