Skip to main content
Log in

Homogeneous preparation of aerocellulose grafted acrylamide and its CO2 adsorption properties

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Aerocellulose with three-dimensional pore structure and amino groups was prepared by free radical grafting polymerization of acrylamide based on the homogeneous ionic liquid system. The effects of reaction temperature, reaction time, initiator dosage, monomer dosage and crosslinking agent dosage on the loading ratio were studied. The aerocellulose was characterized by Fourier transform infrared spectroscopy, elemental analysis, X ray diffraction, scanning electron microscope, thermogravimetric analysis and N2 adsorption–desorption analysis. The adsorption capacity of CO2 was measured on a static adsorption device and the results indicated that adding N, N-methylene-bis-acrylamide (MBA) as a cross-linking agent could increase the loading ratio significantly. The loading ratio could reach up to 38.59% when reaction temperature is 333.15 K, reaction time is 6 h and cellulose:APS:AM:MBA = 1:0.1:6:0.1. Although the specific surface area decreased after grafting process, the CO2 adsorption capacity achieved 1.07 mmol/g at 315.15 K and 190 kPa, while the adsorption amount of ungrafted aerocellulose was only 0.52 mmol/g. Furthermore, the fitting results showed that the CO2 adsorption behavior on ungrafted aerocellulose belongs to physical adsorption process, and the adsorption on grafted aerocellulose belongs to both physical and chemical adsorption process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adeosun A, Abbas Z, Abu-Zahra MRM (2013) Screening and characterization of advanced amine based solvent systems for CO2 post-combustion capture. Energy Procedia 37:300–305

    Article  CAS  Google Scholar 

  • Barner-Kowollik C (2009) Acrylate free radical polymerization: from mechanism to polymer design. Macromol Rapid Commun 30:1961–1963

    Article  CAS  Google Scholar 

  • Chin SF, Romainor ANB, Pang SC (2014) Fabrication of hydrophobic and magnetic cellulose aerogel with high oil absorption capacity. Mater Lett 115(2):241–243

    Article  CAS  Google Scholar 

  • Dassanayake NL, Phillips RW (1984) Determination of the composition of acrylamide/acrylate copolymers using thermogravimetric analysis. Anal Chem 56:1753–1755

    Article  CAS  Google Scholar 

  • Feng J, Nguyen ST, Fan Z, Hai MD (2015) Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels. Chem Eng J 270:168–175

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Gebald C, Wurzbacher JA, Tingaut P, Zimmermann T, Steinfeld A (2011) Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environ Sci Technol 45:9101–9108

    Article  CAS  Google Scholar 

  • Gray ML, Soong Y, Champagne KJ, Baltrus J, Stevens RW Jr, Toochinda P, Chuang SSC (2004) CO2 capture by amine-enriched fly ash carbon sorbents. Sep Purif Technol 35:31–36

    Article  CAS  Google Scholar 

  • Gunathilake C, Dassanayake RS, Abidi N, Jaroniec M (2016) Amidoxime-functionalized microcrystalline cellulose-mesoporous silica composites for carbon dioxide sorption at elevated temperatures. J Mater Chem A 4(13):4808–4819

    Article  CAS  Google Scholar 

  • Hu H, Zhang T, Yuan S, Tang S (2017) Functionalization of multi-walled carbon nanotubes with phenylenediamine for enhanced CO2 adsorption. Adsorption 23:73–85

    Article  CAS  Google Scholar 

  • Johnsson F (2011) Perspectives on CO2 capture and storage. Greenh Gases Sci Technol 1(2):119–133

    Article  CAS  Google Scholar 

  • Lee SY, Park SJ (2015) A review on solid adsorbents for carbon dioxide capture. J Ind Eng Chem 23:1–11

    Article  Google Scholar 

  • Li H, Zhang T, Yuan S, Tang S (2016a) MCM-36 zeolites tailored with acidic ionic liquid to regulate adsorption properties of isobutane and 1-butene. Chin J Chem Eng 24:1703–1711

    Article  CAS  Google Scholar 

  • Li K, Tian S, Jiang J, Wang J, Chen X, Yan F (2016b) Pine cone shell-based activated carbon used for CO2 adsorption. J Mater Chem A 4:5223–5234

    Article  CAS  Google Scholar 

  • Liu H, Geng B, Chen Y, Wang H (2017) A review on the aerogel-type oil sorbents derived from nanocellulose. ACS Sustain Chem Eng 5(1):49–66

    Article  CAS  Google Scholar 

  • Loganathan S, Tikmani M, Mishra A, Ghoshal AK (2016) Amine tethered pore-expanded MCM-41 for CO2 capture: experimental, isotherm and kinetic modeling studies. Chem Eng J 303:89–99

    Article  CAS  Google Scholar 

  • Lu X, Mi Y (2005) Characterization of the interfacial interaction between polyacrylamide and silicon substrate by Fourier transform infrared spectroscopy. Macromolecules 38(3):839–843

    Article  CAS  Google Scholar 

  • Maatar W, Boufi S (2015) Poly(methacylic acid-co-maleic acid) grafted nanofibrillated cellulose as a reusable novel heavy metal ions adsorbent. Carbohydr Polym 126:199–207

    Article  CAS  Google Scholar 

  • Macdowell N, Florin N, Buchard A, Hallett J, Galindo A, Jackson G, Adjiman CS, Williams CK, Shah N, Fennell P (2010) An overview of CO2 capture technologies. Energy Environ Sci 3(11):1645–1669

    Article  CAS  Google Scholar 

  • Mamleev V, Bourbigot S, Yvon J (2007) Kinetic analysis of the thermal decomposition of cellulose: the main step of mass loss. J Anal Appl Pyrolysis 80:151–165

    Article  CAS  Google Scholar 

  • Mansourizadeh A, Ismail AF (2011) A developed asymmetric PVDF hollow fiber membrane structure for CO2 absorption. Int J Greenh Gas Control 5:374–380

    Article  CAS  Google Scholar 

  • Nguyen ST, Feng J, Ng SK, Wong JPW, Tan VBC, Duong HM (2014) Advanced thermal insulation and absorption properties of recycled cellulose aerogels. Colloids Surf A 445:128–134

    Article  CAS  Google Scholar 

  • Oksman K, Aitomäki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S (2016) Review of the recent developments in cellulose nanocomposite processing. Composites A 83:2–18

    Article  CAS  Google Scholar 

  • Rezakazemi M, Amooghin AE, Montazer-Rahmati MM, Ismail AF, Matsuura T (2014) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog Polym Sci 39:817–861

    Article  CAS  Google Scholar 

  • Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40

    Article  CAS  Google Scholar 

  • Sharma RK, Chauhan GS (2009) Synthesis and characterization of graft copolymers of 2-hydroxyethyl methacrylate and some comonomers onto extracted cellulose for use in separation technologies. BioResources 4(3):986–1005

    CAS  Google Scholar 

  • Stainforth DA, Aina T, Christensen C, Collins M, Faull N, Frame DJ, Kettleborough JA, Knight S, Martin A, Murphy JM, Piani C, Sexton D, Smith LA, Spicer RA, Thorpe AJ, Allen MR (2005) Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433:403–406

    Article  CAS  Google Scholar 

  • Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem 87:1051–1069

    Article  CAS  Google Scholar 

  • Ünveren EE, Monkul BÖ, Sarıoğlan Ş, Karademir N, Alper E (2016) Solid amine sorbents for CO2 capture by chemical adsorption: a review. Petroleum 3(1):37–50

    Article  Google Scholar 

  • Xu X, Song C, Andresen JM, Miller BG, Scaroni AW (2002) Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy Fuels 16:1463–1469

    Article  CAS  Google Scholar 

  • Xydias P, Spanopoulos I, Klontzas E, Froudakis EE, Trikalitis PN (2014) Drastic enhancement of the CO2 adsorption properties in sulfone-functionalized Zr- and Hf-UiO-67 MOFs with hierarchical mesopores. Inorg Chem 53(2):679–681

    Article  CAS  Google Scholar 

  • Yan X, Zhang L, Zhang Y, Yang G, Yan Z (2011) Amine-modified SBA-15: effect of pore structure on the performance for CO2 capture. Ind Eng Chem Res 50(6):3220–3226

    Article  CAS  Google Scholar 

  • Yeh JT, Resnik KP, Rygle K, Pennline HW (2005) Semi-batch absorption and regeneration studies for CO2 capture by aqueous ammonia. Fuel Process Technol 86:1533–1546

    Article  CAS  Google Scholar 

  • Younas M, Sohail M, Leong LK, Bashir MJ, Sumathi S (2016) Feasibility of CO2 adsorption by solid adsorbents: a review on low-temperature systems. Int J Environ Sci Technol 13:1839–1860

    Article  CAS  Google Scholar 

  • Zhang Y, Tang S, Zhang T (2017) Homogeneous alkalization of cellulose in N -methylmorpholine- N -oxide/water solution. Cellulose 24:1235–1245

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the China Scholarship Council (201706245038), National Nature Science Foundation of China (Grant No. 21576168) and National Key R&D Plan (2016YFB0600904).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 116 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Tang, S. & Zhang, T. Homogeneous preparation of aerocellulose grafted acrylamide and its CO2 adsorption properties. Cellulose 27, 3263–3275 (2020). https://doi.org/10.1007/s10570-020-03009-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03009-9

Keywords

Navigation