Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Familial hypercholesterolaemia: evolving knowledge for designing adaptive models of care

Abstract

Optimal care for familial hypercholesterolaemia (FH) requires patient-centred management, multidisciplinary teamwork, involvement of primary care practitioners, patient networks, support groups and high-quality clinical registries, implemented through models of care adapted to FH. Models of care — evidence-based and context-specific frameworks that aim to deliver the highest quality of care for patients and their families — allow the application of precision and multidisciplinary medicine to FH care and can serve as paradigms for the prevention of premature atherosclerotic cardiovascular disease in all at-risk patients and families worldwide. The exponential growth in the number of publications on diverse aspects of FH has provided new knowledge for developing essential elements of existing models of care. These elements include clinical diagnostic criteria and genetic testing; risk restratification strategies; LDL-cholesterol treatment targets; management protocols for children; care of women in pregnancy; use of pharmacotherapies, including ezetimibe and PCSK9 inhibitors; use of lipoprotein apheresis for severe FH; and addressing barriers to care. However, substantial gaps remain that need to be addressed by a broad research agenda, implementation strategies and global collaboration and advocacy, aimed at improving the uptake, cost-effectiveness and routine implementation of evidence-based standards. In this Review, we summarize the dramatic increase in knowledge that informs adaptive models of care, with an emphasis on articles published since 2014.

Key points

  • Effective identification of familial hypercholesterolaemia (FH) requires the coordination of several screening strategies, with an emphasis on early detection and a central role for primary care.

  • Clinical diagnostic criteria for FH can be imprecise and need refining with affordable genetic testing; detection of a pathogenic mutation has prognostic utility and allows cascade testing and the initiation of treatment in childhood.

  • Incident atherosclerotic cardiovascular disease is variable in FH and can be predicted by genetic and phenotypic factors, including LDL-cholesterol burden and non-invasive imaging methods.

  • Management entails the timely lowering of LDL-cholesterol burden by lifestyle modifications and the use of statins, followed by ezetimibe and PCSK9 inhibitors if required; women and children need special care, and lipoprotein apheresis is indicated in patients with severe FH.

  • Effective models of care require multidisciplinary teams, patient networks, registries and research programmes; implementation remains a major challenge.

  • The evidence reviewed can be used to design adaptive models of care for FH.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An example of a patient pathway integrated across primary and specialist care for heterozygous FH.
Fig. 2: Phenotypic and genetic spectrum of FH.
Fig. 3: Risk of CAD across categories of LDL-cholesterol level and FH-causing mutation status.
Fig. 4: Development and progression of atherosclerosis in FH.
Fig. 5: Sequential treatment pathway for adults with FH7.

Similar content being viewed by others

References

  1. Khera, A. V. & Kathiresan, S. Genetics of coronary artery disease: discovery, biology and clinical translation. Nat. Rev. Genet. 18, 331–344 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Garg, A., Garg, V., Hegele, R. A. & Lewis, G. F. Practical definitions of severe versus familial hypercholesterolaemia and hypertriglyceridaemia for adult clinical practice. Lancet Diabetes Endocrinol. 7, 880–886 (2019).

    CAS  PubMed  Google Scholar 

  3. Watts, G. F. et al. Integrated guidance on the care of familial hypercholesterolaemia from the International FH Foundation. Int. J. Cardiol. 171, 309–325 (2014).

    PubMed  Google Scholar 

  4. Berberich, A. J. & Hegele, R. A. The complex molecular genetics of familial hypercholesterolaemia. Nat. Rev. Cardiol. 16, 9–20 (2018).

    Google Scholar 

  5. Sturm, A. C. et al. Clinical genetic testing for familial hypercholesterolemia: JACC scientific expert panel. J. Am. Coll. Cardiol. 72, 662–680 (2018).

    PubMed  Google Scholar 

  6. Nordestgaard, B. et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur. Heart J. 34, 3478–3490 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Gidding, S. S. et al. The agenda for familial hypercholesterolemia: a scientific statement from the American Heart Association. Circulation 132, 2167–2192 (2015).

    PubMed  Google Scholar 

  8. Wiegman, A. et al. Familial hypercholesterolaemia in children and adolescents: gaining decades of life by optimizing detection and treatment. Eur. Heart J. 36, 2425–2437 (2015).

    PubMed  PubMed Central  Google Scholar 

  9. Vallejo-Vaz, A. J. et al. Overview of the current status of familial hypercholesterolaemia care in over 60 countries - the EAS Familial Hypercholesterolaemia Studies Collaboration (FHSC). Atherosclerosis 277, 234–255 (2018).

    CAS  PubMed  Google Scholar 

  10. Representatives of the Global Familial Hypercholesterolemia Community. Reducing the clinical and public health burden of familial hypercholesterolemia — a global call to action. JAMA Cardiol. https://doi.org/10.1001/jamacardio.2019.5173 (2020).

  11. Ray, K. K. & Watts, G. F. Improving the global care of familial hypercholesterolaemia: starting the ball rolling. Atherosclerosis 277, 230–233 (2018).

    CAS  PubMed  Google Scholar 

  12. Ray, K. K. & Hovingh, G. K. Familial hypercholesterolaemia: a common disease. Eur. Heart J. 37, 1395–1397 (2016).

    PubMed  Google Scholar 

  13. Defesche, J. C. et al. Familial hypercholesterolaemia. Nat. Rev. Dis. Primers 3, 17093 (2017).

    PubMed  Google Scholar 

  14. Watts, G. F. et al. Familial hypercholesterolaemia: a model of care for Australasia. Atheroscler. Suppl. 12, 221–263 (2011).

    PubMed  Google Scholar 

  15. Public Health England. Familial hypercholesterolaemia: implementing a systems approach to detection and management. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/731873/familial_hypercholesterolaemia_implementation_guide.pdf (2018).

  16. Akioyamen, L. E. et al. Estimating the prevalence of heterozygous familial hypercholesterolaemia: a systematic review and meta-analysis. BMJ Open 7, e016461 (2017).

    PubMed  PubMed Central  Google Scholar 

  17. Umans-Eckenhausen, M. A., Defesche, J. C., Sijbrands, E. J., Scheerder, R. L. & Kastelein, J. J. Review of first 5 years of screening for familial hypercholesterolaemia in the Netherlands. Lancet 357, 165–168 (2001).

    CAS  PubMed  Google Scholar 

  18. Leren, T. P. et al. Application of molecular genetics for diagnosing familial hypercholesterolemia in Norway: results from a family-based screening program. Semin. Vasc. Med. 4, 75–85 (2004).

    PubMed  Google Scholar 

  19. Alver, M. et al. Recall by genotype and cascade screening for familial hypercholesterolemia in a population-based biobank from Estonia. Genet. Med. 21, 1173–1180 (2019).

    CAS  PubMed  Google Scholar 

  20. Jackson, C. L. et al. Identifying familial hypercholesterolemia using a blood donor screening program with more than 1 million volunteer donors. JAMA Cardiol. 4, 685–689 (2019).

    PubMed  Google Scholar 

  21. Nanchen, D. et al. Prevalence and management of familial hypercholesterolaemia in patients with acute coronary syndromes. Eur. Heart J. 36, 2438–2445 (2015).

    CAS  PubMed  Google Scholar 

  22. Kreissl, A., Walleczek, N., Espina, P. R., Hallwirth, U. & Greber-Platzer, S. Selective screening for familial hypercholesterolemia in Austrian children - first year results. BMC Pediatr. 19, 208 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kerr, M. et al. Cost effectiveness of cascade testing for familial hypercholesterolaemia, based on data from familial hypercholesterolaemia services in the UK. Eur. Heart J. 38, 1832–1839 (2017).

    PubMed  PubMed Central  Google Scholar 

  24. Ademi, Z. et al. Cascade screening based on genetic testing is cost-effective: evidence for the implementation of models of care for familial hypercholesterolaemia. J. Clin. Lipidol. 8, 390–400 (2014).

    PubMed  Google Scholar 

  25. Louter, L., Defesche, J. & Roeters van Lennep, J. Cascade screening for familial hypercholesterolemia: practical consequences. Atheroscler. Suppl. 30, 77–85 (2017).

    PubMed  Google Scholar 

  26. Brett, T., Qureshi, N., Gidding, S. & Watts, G. F. Screening for familial hypercholesterolaemia in primary care: time for general practice to play its part. Atherosclerosis 277, 399–406 (2018).

    CAS  PubMed  Google Scholar 

  27. Safarova, M. S., Liu, H. & Kullo, I. J. Rapid identification of familial hypercholesterolemia from electronic health records: the SEARCH study. J. Clin. Lipidol. 10, 1230–1239 (2016).

    PubMed  Google Scholar 

  28. Banda, J. M. et al. Finding missed cases of familial hypercholesterolemia in health systems using machine learning. NPJ Digit. Med. 2, 23 (2019).

    PubMed  PubMed Central  Google Scholar 

  29. Myers, K. D. et al. Precision screening for familial hypercholesterolaemia: a machine learning study applied to electronic health encounter data. Lancet Digit. Health 1, e393–e402 (2019).

    Google Scholar 

  30. Pears, R. et al. The reduced cost of providing a nationally recognised service for familial hypercholesterolaemia. Open Heart 1, e000015 (2014).

    PubMed  PubMed Central  Google Scholar 

  31. Morris, J. K., Wald, D. S. & Wald, N. J. The evaluation of cascade testing for familial hypercholesterolemia. Am. J. Med. Genet. A 158, 78–84 (2012).

    Google Scholar 

  32. Wald, D. S. et al. Child–parent familial hypercholesterolemia screening in primary care. N. Engl. J. Med. 375, 1628–1637 (2016).

    CAS  PubMed  Google Scholar 

  33. Bowman, F. L. et al. Identifying perceptions and preferences of the general public concerning universal screening of children for familial hypercholesterolaemia. Public Health Genomics 22, 23–35 (2019).

    Google Scholar 

  34. McKay, A. J. et al. Universal screening at age 1–2 years as an adjunct to cascade testing for familial hypercholesterolaemia in the UK: a cost-utility analysis. Atherosclerosis 275, 434–443 (2018).

    CAS  PubMed  Google Scholar 

  35. Klančar, G. et al. Universal screening for familial hypercholesterolemia in children. J. Am. Coll. Cardiol. 66, 1250–1257 (2015).

    PubMed  Google Scholar 

  36. Georges, N. et al. Universal screening program for lipid disorders in two to ten years old Lebanese children: a new approach. Int. J. Pediatr. Adolesc. Med. 6, 101–108 (2019).

    PubMed  PubMed Central  Google Scholar 

  37. de Ferranti, S. D. et al. Cholesterol screening and treatment practices and preferences: a survey of United States pediatricians. J. Pediatr. 185, 99–105.e2 (2017).

    PubMed  Google Scholar 

  38. Mach, F. et al. 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk: the task force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur. Heart J. 41, 111–188 (2019).

    Google Scholar 

  39. Chan, D. C. et al. A comparative analysis of phenotypic predictors of mutations in familial hypercholesterolemia. J. Clin. Endocrinol. Metab. 103, 1704–1714 (2018).

    PubMed  Google Scholar 

  40. Haralambos, K., Ashfield-Watt, P. & McDowell, I. F. Diagnostic scoring for familial hypercholesterolaemia in practice. Curr. Opin. Lipidol. 27, 367–374 (2016).

    CAS  PubMed  Google Scholar 

  41. Haralambos, K. et al. Clinical experience of scoring criteria for familial hypercholesterolaemia (FH) genetic testing in Wales. Atherosclerosis 240, 190–196 (2015).

    CAS  PubMed  Google Scholar 

  42. Harada-Shiba, M. et al. Guidelines for diagnosis and treatment of familial hypercholesterolemia 2017. J. Atheroscler. Thromb. 25, 751–770 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Atherosclerosis and Coronary Heart Disease Group of the Chinese Society of Cardiology of Chinese Medical Association and Editorial Board of Chinese Journal of Cardiology. Chinese expert consensus on screening, diagnosis and treatment of familial hypercholesterolemia. Zhonghua Xin Xue Guan Bing Za Zhi 46, 99–103 (2018).

    Google Scholar 

  44. Grundy, S. M. et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 73, e285–e350 (2019).

    PubMed  Google Scholar 

  45. Bell, D. A. et al. Familial hypercholesterolaemia in primary care: knowledge and practices among general practitioners in Western Australia. Heart Lung Circ. 23, 309–313 (2014).

    PubMed  Google Scholar 

  46. Withycombe, B., Winden, J. C., Hassanyn, R., Duell, P. B. & Ito, M. K. The extent of familial hypercholesterolemia instruction in US schools and colleges of medicine, pharmacy, and osteopathic medicine. J. Clin. Lipidol. 9, 281–288 (2015).

    PubMed  Google Scholar 

  47. Azraii, A. B. et al. Knowledge, awareness and practice regarding familial hypercholesterolaemia among primary care physicians in Malaysia: the importance of professional training. Atherosclerosis 277, 508–516 (2018).

    CAS  PubMed  Google Scholar 

  48. Langsted, A., Kamstrup, P. R., Benn, M., Tybjærg-Hansen, A. & Nordestgaard, B. G. High lipoprotein(a) as a possible cause of clinical familial hypercholesterolaemia: a prospective cohort study. Lancet Diabetes Endocrinol. 4, 577–587 (2016).

    CAS  PubMed  Google Scholar 

  49. Chan, D. C. et al. Effect of lipoprotein(a) on the diagnosis of familial hypercholesterolemia: does it make a difference in the clinic? Clin. Chem. 65, 1258–1266 (2019).

    CAS  PubMed  Google Scholar 

  50. Harada-Shiba, M. et al. Guidance for pediatric familial hypercholesterolemia 2017. J. Atheroscler. Thromb. 25, 539–553 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Starr, B. et al. Development of sensitive and specific age-and gender-specific low-density lipoprotein cholesterol cutoffs for diagnosis of first-degree relatives with familial hypercholesterolaemia in cascade testing. Clin. Chem. Lab. Med. 46, 791–803 (2008).

    CAS  PubMed  Google Scholar 

  52. Pérez de Isla, L. et al. Coronary heart disease, peripheral arterial disease, and stroke in familial hypercholesterolaemia. Arterioscler. Thromb. Vasc. Biol. 36, 2004–2010 (2016).

    PubMed  Google Scholar 

  53. Besseling, J. et al. Selection of individuals for genetic testing for familial hypercholesterolaemia: development and external validation of a prediction model for the presence of a mutation causing familial hypercholesterolaemia. Eur. Heart J. 38, 565–573 (2016).

    Google Scholar 

  54. Santos, R. D. et al. Defining severe familial hypercholesterolaemia and the implications for clinical management: a consensus statement from the International Atherosclerosis Society Severe Familial Hypercholesterolemia Panel. Lancet Diabetes Endocrinol. 4, 850–861 (2016).

    PubMed  Google Scholar 

  55. Humphries, S. E. et al. Coronary heart disease mortality in severe vs. non-severe familial hypercholesterolaemia in the Simon Broome Register. Atherosclerosis 281, 207–212 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hooper, A. J., Burnett, J. R., Bell, D. A. & Watts, G. F. The present and the future of genetic testing in familial hypercholesterolemia: opportunities and caveats. Curr. Atheroscler. Rep. 20, 31 (2018).

    PubMed  Google Scholar 

  57. Larsen, L. E., Stoekenbroek, R. M., Kastelein, J. J. & Holleboom, A. G. Moving targets: recent advances in lipid-lowering therapies. Arterioscler. Thromb. Vasc. Biol. 39, 349–359 (2019).

    CAS  PubMed  Google Scholar 

  58. Khera, A. V. et al. Diagnostic yield and clinical utility of sequencing familial hypercholesterolemia genes in patients with severe hypercholesterolemia. J. Am. Coll. Cardiol. 67, 2578–2589 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Abul-Husn, N. S. et al. Genetic identification of familial hypercholesterolemia within a single U.S. health care system. Science 354, aaf7000 (2016).

    PubMed  Google Scholar 

  60. Benn, M., Watts, G. F., Tybjærg-Hansen, A. & Nordestgaard, B. G. Mutations causative of familial hypercholesterolaemia: screening of 98 098 individuals from the Copenhagen General Population Study estimated a prevalence of 1 in 217. Eur. Heart J. 37, 1384–1394 (2016).

    CAS  PubMed  Google Scholar 

  61. Amor-Salamanca, A. et al. Genetically confirmed familial hypercholesterolemia in patients with acute coronary syndrome. J. Am. Coll. Cardiol. 70, 1732–1740 (2017).

    PubMed  Google Scholar 

  62. Ference, B. A. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 38, 2459–2472 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sharifi, M. et al. Greater preclinical atherosclerosis in treated monogenic familial hypercholesterolemia vs. polygenic hypercholesterolemia. Atherosclerosis 263, 405–411 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Trinder, M. et al. Risk of premature atherosclerotic disease in patients with monogenic versus polygenic familial hypercholesterolemia. J. Am. Coll. Cardiol. 74, 512–522 (2019).

    PubMed  Google Scholar 

  65. Roberts, M. C. et al. Delivery of cascade screening for hereditary conditions: a scoping review of the literature. Health Aff. 37, 801–808 (2018).

    Google Scholar 

  66. George, R., Kovak, K. & Cox, S. L. Aligning policy to promote cascade genetic screening for prevention and early diagnosis of heritable diseases. J. Genet. Couns. 24, 388–399 (2015).

    PubMed  Google Scholar 

  67. Knowles, J. W., Rader, D. J. & Khoury, M. J. Cascade screening for familial hypercholesterolemia and the use of genetic testing. J. Am. Med. Assoc. 318, 381–382 (2017).

    Google Scholar 

  68. National Institute for Health and Care Excellence. Familial hypercholesterolaemia: identification management. https://www.nice.org.uk/guidance/cg71 (2019).

  69. Brunham, L. R. et al. Canadian Cardiovascular Society position statement on familial hypercholesterolemia: update 2018. Can. J. Cardiol. 34, 1553–1563 (2018).

    PubMed  Google Scholar 

  70. Hagger, M. S. et al. Health literacy in familial hypercholesterolemia: a cross-national study. Eur. J. Prev. Cardiol. 25, 936–943 (2018).

    PubMed  Google Scholar 

  71. Ormond, K. E. et al. Developing a conceptual, reproducible, rubric-based approach to consent and result disclosure for genetic testing by clinicians with minimal genetics background. Genet. Med. 21, 727 (2019).

    CAS  PubMed  Google Scholar 

  72. Sarraju, A. & Knowles, J. W. Genetic testing and risk scores: impact on familial hypercholesterolemia. Front. Cardiovasc. Med. 6, 5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Raal, F. J. et al. Long-term treatment with evolocumab added to conventional drug therapy, with or without apheresis, in patients with homozygous familial hypercholesterolaemia: an interim subset analysis of the open-label TAUSSIG study. Lancet Diabetes Endocrinol. 5, 280–290 (2017).

    CAS  PubMed  Google Scholar 

  74. Cuchel, M. et al. Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. a position paper from the consensus panel on familial hypercholesterolaemia of the European Atherosclerosis Society. Eur. Heart J. 35, 2146–2157 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Futema, M., Bourbon, M., Williams, M. & Humphries, S. E. Clinical utility of the polygenic LDL-C SNP score in familial hypercholesterolemia. Atherosclerosis 277, 457–463 (2018).

    CAS  PubMed  Google Scholar 

  76. Nikkola, E. et al. Family-specific aggregation of lipid GWAS variants confers the susceptibility to familial hypercholesterolemia in a large Austrian family. Atherosclerosis 264, 58–66 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Iacocca, M. A. et al. ClinVar database of global familial hypercholesterolemia-associated DNA variants. Hum. Mutat. 39, 1631–1640 (2018).

    PubMed  PubMed Central  Google Scholar 

  78. Safarova, M. S. et al. Variability in assigning pathogenicity to incidental findings: insights from LDLR sequence linked to the electronic health record in 1013 individuals. Eur. J. Hum. Genet. 25, 410 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hendricks-Sturrup, R. M., Mazor, K. M., Sturm, A. C. & Lu, C. Y. Barriers and facilitators to genetic testing for familial hypercholesterolemia in the United States: a review. J. Pers. Med. 9, 32 (2019).

    PubMed Central  Google Scholar 

  80. Mata, P., Alonso, R. & de Isla, L. P. Atherosclerotic cardiovascular disease risk assessment in familial hypercholesterolemia: does one size fit all? Curr. Opin. Lipidol. 29, 445–452 (2018).

    CAS  PubMed  Google Scholar 

  81. Paquette, M. & Baass, A. Predicting cardiovascular disease in familial hypercholesterolemia. Curr. Opin. Lipidol. 29, 299–306 (2018).

    CAS  PubMed  Google Scholar 

  82. Alonso, R. et al. Lipoprotein(a) levels in familial hypercholesterolaemia: an important predictor for cardiovascular disease independent of the type of LDL-receptor mutation. J. Am. Coll. Cardiol. 63, 1982–1989 (2014).

    CAS  PubMed  Google Scholar 

  83. Chan, D. C. et al. Elevated lipoprotein(a), hypertension and renal insufficiency as predictors of coronary artery disease in patients with genetically confirmed heterozygous familial hypercholesterolemia. Int. J. Cardiol. 201, 633–638 (2015).

    PubMed  Google Scholar 

  84. Paré, G. et al. Lipoprotein(a) Levels and the risk of myocardial infarction among 7 ethnic groups. Circulation 139, 1472–1482 (2019).

    PubMed  Google Scholar 

  85. Vuorio, A., Watts, G. F. & Kovanen, P. T. Lipoprotein(a) as a risk factor for calcific aortic valvulopathy in heterozygous familial hypercholesterolemia. Atherosclerosis 281, 25–30 (2019).

    CAS  PubMed  Google Scholar 

  86. Mundal, L. J. et al. Association of low-density lipoprotein cholesterol with risk of aortic valve stenosis in familial hypercholesterolemia. JAMA Cardiol. 4, 1156–1159 (2019).

    Google Scholar 

  87. Mangili, L. C. et al. Epicardial fat is associated with severity of subclinical coronary atherosclerosis in familial hypercholesterolemia. Atherosclerosis 254, 73–77 (2016).

    CAS  PubMed  Google Scholar 

  88. Tada, H. et al. Impact of clinical signs and genetic diagnosis of familial hypercholesterolaemia on the prevalence of coronary artery disease in patients with severe hypercholesterolaemia. Eur. Heart J. 38, 1573–1579 (2017).

    CAS  PubMed  Google Scholar 

  89. Emanuelsson, F., Nordestgaard, B. G. & Benn, M. Familial hypercholesterolemia and risk of peripheral arterial disease and chronic kidney disease. J. Clin. Endocrinol. Metab. 103, 4491–4500 (2018).

    PubMed  Google Scholar 

  90. Pérez de Isla, L. et al. Predicting cardiovascular events in familial hypercholesterolemia: The SAFEHEART registry. Circulation 135, 2133–2144 (2017).

    PubMed  Google Scholar 

  91. Paquette, M. et al. Cardiovascular disease in familial hypercholesterolemia: validation and refinement of the montreal-FH-SCORE. J. Clin. Lipidol. 11, 1161–1167.e3 (2017).

    PubMed  Google Scholar 

  92. Wilson, D. P. et al. Use of lipoprotein(a) in clinical practice: a biomarker whose time has come. A scientific statement from the National Lipid Association. J. Clin. Lipidol. 13, 374–392 (2019).

    PubMed  Google Scholar 

  93. Paquette, M. et al. The 9p21.3 locus and cardiovascular risk in familial hypercholesterolemia. J. Clin. Lipidol. 11, 406–412 (2017).

    PubMed  Google Scholar 

  94. Paquette, M., Dufour, R. & Baass, A. ABO blood group is a cardiovascular risk factor in patients with familial hypercholesterolemia. J. Clin. Lipidol. 12, 383–389.e1 (2018).

    PubMed  Google Scholar 

  95. Paquette, M. et al. Polygenic risk score predicts prevalence of cardiovascular disease in patients with familial hypercholesterolemia. J. Clin. Lipidol. 11, 725–732.e5 (2017).

    PubMed  Google Scholar 

  96. Khera, A. V. et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat. Genet. 10, 1219–1224 (2018).

    Google Scholar 

  97. Zhao, P. J. et al. Genetic determinants of myocardial infarction risk in familial hypercholesterolemia. CJC Open. 1, 225–230 (2019).

    PubMed  PubMed Central  Google Scholar 

  98. Ellis, K. L. et al. Value of measuring lipoprotein(a) during cascade testing for familial hypercholesterolemia. J. Am. Coll. Cardiol. 73, 1029–1039 (2019).

    CAS  PubMed  Google Scholar 

  99. Vuorio, A., Watts, G. F., Schneider, W. J., Tsimikas, S. & Kovanen, P. T. Familial hypercholesterolemia and elevated lipoprotein(a): double heritable risk and new therapeutic opportunities. J. Intern. Med. 287, 2–18 (2020).

    CAS  PubMed  Google Scholar 

  100. Ohta, N. et al. Proprotein convertase subtilisin/kexin 9 V4I variant with LDLR mutations modifies the phenotype of familial hypercholesterolemia. J. Clin. Lipidol. 10, 547–555.e5 (2016).

    PubMed  Google Scholar 

  101. Cegla, J. et al. HEART UK consensus statement on lipoprotein(a) - a call to action. Atherosclerosis 291, 62–70 (2019).

    CAS  PubMed  Google Scholar 

  102. Sharifi, M., Rakhit, R. D., Humphries, S. E. & Nair, D. Cardiovascular risk stratification in familial hypercholesterolaemia. Heart 102, 1003–1008 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Miname, M. H. et al. Coronary artery calcium and cardiovascular events in patients with familial hypercholesterolemia receiving standard lipid-lowering therapy. J. Am. Coll. Cardiol. Cardiovasc. Imaging 12, 1797–1804 (2019).

    Google Scholar 

  104. Knuuti, J. et al. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 41, 407–477 (2019).

    Google Scholar 

  105. Kusters, D. M., Wiegman, A., Kastelein, J. J. & Hutten, B. A. Carotid intima-media thickness in children with familial hypercholesterolemia. Circ. Res. 114, 307–310 (2013).

    PubMed  Google Scholar 

  106. Braamskamp, M. J. et al. Effect of rosuvastatin on carotid intima-media thickness in children with heterozygous familial hypercholesterolemia: the CHARON study. Circulation 136, 359–366 (2017).

    CAS  PubMed  Google Scholar 

  107. Luirink, I. et al. 20-year follow-up of statins in children with familial hypercholesterolaemia. N. Engl. J. Med. 381, 1547–1556 (2019).

    CAS  PubMed  Google Scholar 

  108. Tada, H. et al. Assessments of carotid artery plaque burden in patients with familial hypercholesterolemia. Am. J. Cardiol. 120, 1955–1960 (2017).

    PubMed  Google Scholar 

  109. Spence, J. D. Approaching automated 3-dimensional measurement of atherosclerotic plaque volume. J. Am. Coll. Cardiol. 70, 314–317 (2017).

    PubMed  Google Scholar 

  110. López-Melgar, B. et al. Subclinical atherosclerosis burden by 3D ultrasound in mid-life: the PESA Study. J. Am. Coll. Cardiol. 70, 301–313 (2017).

    PubMed  Google Scholar 

  111. Doris, M. K., Dweck, M. R. & Fayad, Z. A. The future of imaging in cardiovascular disease intervention trials: 2017 and beyond. Curr. Opin. Lipidol. 27, 605–614 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Gupta, A. et al. The identification of calcified coronary plaque is associated with initiation and continuation of pharmacological and lifestyle preventive therapies: a systematic review and meta-analysis. J. Am. Coll. Cardiol. Cardiovasc. Imaging 10, 833–842 (2017).

    Google Scholar 

  113. Shapiro, M. D. & Blankstein, R. Reclassifying risk in familial hypercholesterolemia: the power of a coronary artery calcium score of zero. J. Am. Coll. Cardiol. Cardiovasc. Imaging 12, 1805–1807 (2018).

    Google Scholar 

  114. Puri, R. et al. Impact of statins on serial coronary calcification during atheroma progression and regression. J. Am. Coll. Cardiol. 65, 1273–1282 (2015).

    CAS  PubMed  Google Scholar 

  115. Chiva-Blanch, G. et al. Liquid biopsy of extracellular microvesicles maps coronary calcification and atherosclerotic plaque in asymptomatic patients with familial hypercholesterolemia: a computed tomographic angiography imaging study. Arterioscler. Thromb. Vasc. Biol. 39, 945–955 (2019).

    CAS  PubMed  Google Scholar 

  116. Pérez de Isla, L. et al. Coronary computed tomographic angiography findings and their therapeutic implications in asymptomatic patients with familial hypercholesterolemia: lessons from the SAFEHEART study. J. Clin. Lipidol. 12, 948–957 (2018).

    PubMed  Google Scholar 

  117. Tada, H. et al. Assessment of coronary atherosclerosis in patients with familial hypercholesterolemia by coronary computed tomography angiography. Am. J. Cardiol. 115, 724–729 (2015).

    PubMed  Google Scholar 

  118. Tada, H. et al. Assessment of arterial stiffness in patients with familial hypercholesterolemia. J. Clin. Lipidol. 12, 397–402.e2 (2018).

    PubMed  Google Scholar 

  119. Beheshti, S., Madsen, C. M., Varbo, A., Benn, M. & Nordestgaard, B. G. Relationship of familial hypercholesterolemia and high LDL cholesterol to ischemic stroke: the Copenhagen general population study. Circulation 138, 578–589 (2018).

    CAS  PubMed  Google Scholar 

  120. van Wijk, D. F. et al. Nonpharmacological lipoprotein apheresis reduces arterial inflammation in familial hypercholesterolemia. J. Am. Coll. Cardiol. 64, 1418–1426 (2014).

    PubMed  Google Scholar 

  121. Bos, S. et al. Novel protein biomarkers associated with coronary artery disease in statin-treated patients with familial hypercholesterolemia. J. Clin. Lipidol. 11, 682–693 (2017).

    PubMed  Google Scholar 

  122. Besseling, J., Hovingh, G. K., Huijgen, R., Kastelein, J. J. P. & Hutten, B. A. Statins in familial hypercholesterolemia: consequences for coronary artery disease and all-cause mortality. J. Am. Coll. Cardiol. 68, 252–260 (2016).

    CAS  PubMed  Google Scholar 

  123. Vallejo-Vaz, A. J. et al. Low-density lipoprotein cholesterol lowering for the primary prevention of cardiovascular disease among men with primary elevations of low-density lipoprotein cholesterol levels of 190 mg/dL or above: analyses from the WOSCOPS (West of Scotland Coronary Prevention Study) 5-year randomized trial and 20-year observational follow-up. Circulation 136, 1878–1891 (2017).

    CAS  PubMed  Google Scholar 

  124. Ridker, P. M. et al. Cardiovascular event reduction with PCSK9 inhibition among 1578 patients with familial hypercholesterolemia: results from the SPIRE randomized trials of bococizumab. J. Clin. Lipidol. 12, 958–965 (2018).

    PubMed  Google Scholar 

  125. Barrett, B., Ricco, J., Wallace, M., Kiefer, D. & Rakel, D. Communicating statin evidence to support shared decision-making. BMC Fam. Pract. 17, 41 (2016).

    PubMed  PubMed Central  Google Scholar 

  126. Sepucha, K. R. & Scholl, I. Measuring shared decision making: a review of constructs, measures, and opportunities for cardiovascular care. Circ. Cardiovasc. Qual. Outcomes 7, 620–626 (2014).

    PubMed  Google Scholar 

  127. Kinnear, F. J. et al. Enablers and barriers to treatment adherence in heterozygous familial hypercholesterolaemia: a qualitative evidence synthesis. Br. Med. J. Open. 9, e030290 (2019).

    Google Scholar 

  128. Spatz, E. S. & Spertus, J. A. Shared decision making: a path toward improved patient-centered outcomes. Circ. Cardiovasc. Qual. Outcomes 5, e75–e77 (2012).

    PubMed  Google Scholar 

  129. Hagger, M. S. et al. Effects of medication, treatment, and behavioral beliefs on intentions to take medication in patients with familial hypercholesterolemia. Atherosclerosis 277, 493–501 (2018).

    CAS  PubMed  Google Scholar 

  130. Robinson, J. G. et al. Enhancing the value of PCSK9 monoclonal antibodies by identifying patients most likely to benefit. J. Clin. Lipidol. 13, 525–537 (2019).

    PubMed  Google Scholar 

  131. Jellinger, P. S. et al. American Association of Clinical Endocrinologists and American College of Endocrinology guidelines for management of dyslipidemia and prevention of cardiovascular disease. Endocr. Pract. 23, 1–87 (2017).

    PubMed  Google Scholar 

  132. Jacobson, T. A. et al. National Lipid Association recommendations for patient-centered management of dyslipidemia: part 1. J. Clin. Lipidol. 9, 129–169 (2015).

    PubMed  Google Scholar 

  133. National Institute for Health and Clinical Excellence. Alirocumab treating primary hypercholesterolaemia and mixed dyslipidaemia. https://www.nice.org.uk/guidance/ta393/resources/alirocumab-for-treatingprimary-hypercholesterolaemia-and-mixeddyslipidaemia-pdf-82602908493253 (2016).

  134. National Institute for Health and Clinical Excellence. Evolocumab treating primary hypercholesterolaemia mixed dyslipidaemia. https://www.nice.org.uk/guidance/ta394/resources/evolocumab-for-treatingprimary-hypercholesterolaemia-and-mixeddyslipidaemia-pdf-82602910172869 (2016).

  135. Pijlman, A. H. et al. Evaluation of cholesterol lowering treatment of patients with familial hypercholesterolemia: a large cross-sectional study in the Netherlands. Atherosclerosis 209, 189–194 (2010).

    CAS  PubMed  Google Scholar 

  136. Perez de Isla, L. et al. Attainment of LDL-cholesterol treatment goals in patients with familial hypercholesterolemia: 5-year SAFEHEART registry follow-up. J. Am. Coll. Cardiol. 67, 1278–1285 (2016).

    PubMed  Google Scholar 

  137. Bogsrud, M. P. et al. LDL-cholesterol goal achievement, cardiovascular disease, and attributed risk of Lp(a) in a large cohort of predominantly genetically verified familial hypercholesterolemia. J. Clin. Lipidol. 13, 279–286 (2019).

    PubMed  Google Scholar 

  138. Galema-Boers, A. M., Lenzen, M. J., Engelkes, S. R., Sijbrands, E. J. & van Lennep, J. E. R. Cardiovascular risk in patients with familial hypercholesterolemia using optimal lipid-lowering therapy. J. Clin. Lipidol. 12, 409–416 (2018).

    PubMed  Google Scholar 

  139. Annemans, L., Packard, C. J., Briggs, A. & Ray, K. K. ‘Highest risk–highest benefit’strategy: a pragmatic, cost-effective approach to targeting use of PCSK9 inhibitor therapies. Eur. Heart J. 39, 2546–2550 (2017).

    PubMed Central  Google Scholar 

  140. Anderson, T. J. et al. 2016 Canadian Cardiovascular Society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the adult. Can. J. Cardiol. 32, 1263–1282 (2016).

    PubMed  Google Scholar 

  141. Landmesser, U. et al. 2017 update of ESC/EAS task force on practical clinical guidance for proprotein convertase subtilisin/kexin type 9 inhibition in patients with atherosclerotic cardiovascular disease or in familial hypercholesterolaemia. Eur. Heart J. 39, 1131–1143 (2017).

    Google Scholar 

  142. Jaspers, N. E. M., Ridker, P. M., Dorresteijn, J. A. N. & Visseren, F. L. J. The prediction of therapy-benefit for individual cardiovascular disease prevention: rationale, implications, and implementation. Curr. Opin. Lipidol. 29, 436–444 (2018).

    CAS  PubMed  Google Scholar 

  143. Nordestgaard, B. G. et al. Fasting is not routinely required for determination of a lipid profile: clinical and laboratory implications including flagging at desirable concentration cut-points—a joint consensus statement from the European Atherosclerosis Society and European Federation of Clinical Chemistry and Laboratory Medicine. Eur. Heart J. 37, 1944–1958 (2016).

    PubMed  PubMed Central  Google Scholar 

  144. Langlois, M. R. et al. Quantifying atherogenic lipoproteins: current and future challenges in the era of personalized medicine and VLDL cholesterol. A consensus statement from EAS and EFLM. Clin. Chem. 64, 1006–1033 (2018).

    CAS  PubMed  Google Scholar 

  145. Martin, S. S. et al. Comparison of low-density lipoprotein cholesterol assessment by Martin/Hopkins estimation, Friedewald estimation, and preparative ultracentrifugation: insights from the FOURIER trial. JAMA Cardiol. 3, 749–753 (2018).

    PubMed  PubMed Central  Google Scholar 

  146. Sathiyakumar, V. et al. Impact of novel low-density lipoprotein-cholesterol assessment on the utility of secondary non-high-density lipoprotein-c and apolipoprotein B targets in selected worldwide dyslipidemia guidelines. Circulation 138, 244–254 (2018).

    CAS  PubMed  Google Scholar 

  147. Pencina, K. M. et al. Trajectories of non–HDL cholesterol across midlife: implications for cardiovascular prevention. J. Am. Coll. Cardiol. 74, 70–79 (2019).

    CAS  PubMed  Google Scholar 

  148. Eckel, R. H. et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 129, S76–S99 (2014).

    PubMed  Google Scholar 

  149. Arroyo-Olivares, R. et al. Adults with familial hypercholesterolaemia have healthier dietary and lifestyle habits compared with their non-affected relatives: the SAFEHEART study. Public Health Nutr. 22, 1433–1443 (2019).

    PubMed  Google Scholar 

  150. Sacks, F. M. et al. Dietary fats and cardiovascular disease: a presidential advisory from the American Heart Association. Circulation 136, e1–e23 (2017).

    PubMed  Google Scholar 

  151. Gidding, S. S. Special commentary: is diet management helpful in familial hypercholesterolemia? Curr. Opin. Clin. Nutr. Metab. Care 22, 135–140 (2019).

    PubMed  Google Scholar 

  152. Khera, A. V. et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N. Engl. J. Med. 375, 2349–2358 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Said, M. A., Verweij, N. & van der Harst, P. Associations of combined genetic and lifestyle risks with incident cardiovascular disease and diabetes in the UK Biobank Study. JAMA Cardiol. 3, 693–702 (2018).

    PubMed  PubMed Central  Google Scholar 

  154. American Diabetes Association. Standards of medical care in diabetes—2019 abridged for primary care providers. Clin. Diabetes 37, 11–34 (2019).

    PubMed Central  Google Scholar 

  155. International Aspirin Foundation. Summary of UK guidelines for aspirin. Aspirin Foundation https://www.aspirin-foundation.com/guidelines/uk-guidelines-aspirin/ (2019).

  156. Eikelboom, J. W. et al. Rivaroxaban with or without aspirin in stable cardiovascular disease. N. Engl. J. Med. 377, 1319–1330 (2017).

    CAS  PubMed  Google Scholar 

  157. Raal, F. J., Hovingh, G. K. & Catapano, A. L. Familial hypercholesterolemia treatments: guidelines and new therapies. Atherosclerosis 277, 483–492 (2018).

    CAS  PubMed  Google Scholar 

  158. Kusters, D. M. et al. Ten-year follow-up after initiation of statin therapy in children with familial hypercholesterolemia. JAMA 312, 1055–1057 (2014).

    PubMed  Google Scholar 

  159. Humphries, S. et al. Coronary heart disease mortality in treated familial hypercholesterolaemia: update of the UK Simon Broome FH Register. Atherosclerosis 274, 41–46 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Nayak, A. et al. Legacy effects of statins on cardiovascular and all-cause mortality: a meta-analysis. BMJ Open 8, e020584 (2018).

    PubMed  PubMed Central  Google Scholar 

  161. Bos, S. et al. Carotid artery plaques and intima medial thickness in familial hypercholesteraemic patients on long-term statin therapy: a case control study. Atherosclerosis 256, 62–66 (2017).

    CAS  PubMed  Google Scholar 

  162. Perez de Isla, L. et al. Long-term effect of 2 intensive statin regimens on treatment and incidence of cardiovascular events in familial hypercholesterolemia: the SAFEHEART study. J. Clin. Lipidol. 13, 989–996 (2019).

    PubMed  Google Scholar 

  163. Ference, B. A. et al. Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease. A Mendelian randomization analysis. J. Am. Coll. Cardiol. 60, 2631–2639 (2012).

    CAS  PubMed  Google Scholar 

  164. Naito, R., Miyauchi, K. & Daida, H. Racial differences in the cholesterol-lowering effect of statin. J. Atheroscler. Thromb. 24, 19–25 (2017).

    PubMed  PubMed Central  Google Scholar 

  165. Tomlinson, B., Chan, P. & Liu, Z.-M. Statin responses in Chinese patients. J. Atheroscler. Thromb. 25, 199–202 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Taguchi, I. et al. High-dose versus low-dose pitavastatin in Japanese patients with stable coronary artery disease (REAL-CAD) a randomized superiority trial. Circulation 137, 1997–2009 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Hartgers, M. L. et al. Achieved LDL cholesterol levels in patients with heterozygous familial hypercholesterolemia: a model that explores the efficacy of conventional and novel lipid-lowering therapy. J. Clin. Lipidol. 12, 972–980.e1 (2018).

    PubMed  Google Scholar 

  168. Cannon, C. P. et al. Ezetimibe added to statin therapy after acute coronary syndromes. N. Engl. J. Med. 372, 2387–2397 (2015).

    CAS  PubMed  Google Scholar 

  169. Tsujita, K. et al. Impact of dual lipid-lowering strategy with ezetimibe and atorvastatin on coronary plaque regression in patients with percutaneous coronary intervention: the multicenter randomized controlled PRECISE-IVUS trial. J. Am. Coll. Cardiol. 66, 495–507 (2015).

    PubMed  Google Scholar 

  170. Watts, G. F., Pang, J., Chan, D. C., Brunt, J. N. & Lewis, B. Angiographic progression of coronary atherosclerosis in patients with familial hypercholesterolaemia treated with non-statin therapy: impact of a fat-modified diet and a resin. Atherosclerosis 252, 82–87 (2016).

    CAS  PubMed  Google Scholar 

  171. Silverman, M. G. et al. Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: a systematic review and meta-analysis. JAMA 316, 1289–1297 (2016).

    CAS  PubMed  Google Scholar 

  172. Giugliano, R. P. et al. Benefit of adding ezetimibe to statin therapy on cardiovascular outcomes and safety in patients with versus without diabetes mellitus: results from IMPROVE-IT (Improved Reduction of Outcomes: Vytorin Efficacy International Trial). Circulation 137, 1571–1582 (2018).

    CAS  PubMed  Google Scholar 

  173. Bach, R. G. et al. Effect of simvastatin-ezetimibe compared with simvastatin monotherapy after acute coronary syndrome among patients 75 years or older: a secondary analysis of a randomized clinical trial. JAMA Cardiol. 4, 846–854 (2019).

    Google Scholar 

  174. Myocardial Infarction Genetics Consortium Investigators. Inactivating mutations in NPC1L1 and protection from coronary heart disease. N. Engl. J. Med. 371, 2072–2082 (2014).

    Google Scholar 

  175. Koopal, C. et al. Predicting the effect of fenofibrate on cardiovascular risk for individual patients with type 2 diabetes. Diabetes Care 41, 1244–1250 (2018).

    CAS  PubMed  Google Scholar 

  176. Bhatt, D. L. et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N. Engl. J. Med. 380, 11–22 (2019).

    CAS  PubMed  Google Scholar 

  177. Sahebkar, A., Reiner, Ž., Simental-Mendía, L. E., Ferretti, G. & Cicero, A. F. Effect of extended-release niacin on plasma lipoprotein (a) levels: a systematic review and meta-analysis of randomized placebo-controlled trials. Metabolism 65, 1664–1678 (2016).

    CAS  PubMed  Google Scholar 

  178. Burgess, S. et al. Association of LPA variants with risk of coronary disease and the implications for lipoprotein (a)-lowering therapies: a mendelian randomization analysis. JAMA Cardiol. 3, 619–627 (2018).

    PubMed  PubMed Central  Google Scholar 

  179. Yamashita, S. et al. Rationale and design of the PROSPECTIVE trial: probucol trial for secondary prevention of atherosclerotic events in patients with prior coronary heart disease. J. Atheroscler. Thromb. 23, 746–756 (2016).

    CAS  PubMed  Google Scholar 

  180. Hartgers, M. L. et al. Alirocumab efficacy in patients with double heterozygous, compound heterozygous, or homozygous familial hypercholesterolemia. J. Clin. Lipidol. 12, 390–396.e8 (2018).

    PubMed  Google Scholar 

  181. Ward, N. C., Page, M. M. & Watts, G. F. PCSK9 inhibition 2018: riding a new wave of coronary prevention. Clin. Sci. 133, 205–224 (2019).

    CAS  PubMed  Google Scholar 

  182. Stoekenbroek, R. M., Lambert, G., Cariou, B. & Hovingh, G. K. Inhibiting PCSK9 — biology beyond LDL control. Nat. Rev. Endocrinol. 15, 52–62 (2019).

    CAS  Google Scholar 

  183. Defesche, J. C. et al. Efficacy of alirocumab in 1191 patients with a wide spectrum of mutations in genes causative for familial hypercholesterolemia. J. Clin. Lipidol. 11, 1338–1346.e7 (2017).

    PubMed  Google Scholar 

  184. Raal, F. J. et al. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): a randomised, double-blind, placebo-controlled trial. Lancet 385, 341–350 (2014).

    PubMed  Google Scholar 

  185. Thedrez, A. et al. Homozygous familial hypercholesterolemia patients with identical mutations variably express the LDLR (low-density lipoprotein receptor) - implications for the efficacy of evolocumab. Arterioscler. Thromb. Vasc. Biol. 38, 592–598 (2018).

    CAS  PubMed  Google Scholar 

  186. Moriarty, P. M. et al. Alirocumab in patients with heterozygous familial hypercholesterolemia undergoing lipoprotein apheresis: the ODYSSEY ESCAPE trial. Eur. Heart J. 37, 3588–3595 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Sabatine, M. S. et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med. 376, 1713–1722 (2017).

    CAS  PubMed  Google Scholar 

  188. Schwartz, G. G. et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N. Engl. J. Med. 379, 2097–2107 (2018).

    CAS  PubMed  Google Scholar 

  189. O’Donoghue, M. L. et al. Lipoprotein(a), PCSK9 inhibition, and cardiovascular risk. Circulation 139, 1483–1492 (2019).

    PubMed  Google Scholar 

  190. Sabatine, M. S. et al. Clinical benefit of evolocumab by severity and extent of coronary artery disease: an analysis from FOURIER. Circulation 138, 756–766 (2018).

    CAS  PubMed  Google Scholar 

  191. Pérez de Isla, L. et al. Potential utility of the SAFEHEART risk equation for rationalising the use of PCSK9 monoclonal antibodies in adults with heterozygous familial hypercholesterolemia. Atherosclerosis 286, 40–45 (2019).

    PubMed  Google Scholar 

  192. Kaasenbrood, L. et al. Estimated individual lifetime benefit from PCSK9 inhibition in statin-treated patients with coronary artery disease. Heart 104, 1699–1705 (2018).

    CAS  PubMed  Google Scholar 

  193. Navarese, E. P. et al. Association between baseline LDL-C level and total and cardiovascular mortality after LDL-C lowering: a systematic review and meta-analysis. JAMA 319, 1566–1579 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Hlatky, M. A. & Kazi, D. S. PCSK9 inhibitors: economics and policy. J. Am. Coll. Cardiol. 70, 2677–2687 (2017).

    CAS  PubMed  Google Scholar 

  195. Stoekenbroek, R. M. et al. PCSK9 inhibitors in clinical practice: delivering on the promise? Atherosclerosis 270, 205–210 (2018).

    CAS  PubMed  Google Scholar 

  196. Gürgöze, M. T. et al. Adverse events associated with PCSK 9 inhibitors: a real-world experience. Clin. Pharmacol. Ther. 105, 496–504 (2019).

    PubMed  Google Scholar 

  197. Baum, S. J. & Brown, A. S. Familial hypercholesterolemia: although identification advances, appreciation and treatment lag. Rev. Cardiovasc. Med. 19, S25–S30 (2018).

    PubMed  Google Scholar 

  198. Myers, K. D. et al. Effect of access to prescribed PCSK9 inhibitors on cardiovascular outcomes. Circ. Cardiovasc. Qual. Outcomes 12, e005404 (2019).

    PubMed  Google Scholar 

  199. Bellosta, S. & Corsini, A. Statin drug interactions and related adverse reactions: an update. Expert. Opin. Drug. Saf. 17, 25–37 (2018).

    CAS  PubMed  Google Scholar 

  200. Newman, C. B. et al. Statin safety and associated adverse events: a scientific statement from the American Heart Association. Arterioscler. Thromb. Vasc. Biol. 39, e38–e81 (2019).

    CAS  PubMed  Google Scholar 

  201. Mach, F. et al. Adverse effects of statin therapy: perception vs. the evidence–focus on glucose homeostasis, cognitive, renal and hepatic function, haemorrhagic stroke and cataract. Eur. Heart J. 39, 2526–2539 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Kajinami, K. et al. Statin intolerance clinical guide 2018. J. Atheroscler. Thromb. https://doi.org/10.5551/jat.50948 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Lotta, L. A. et al. Association between low-density lipoprotein cholesterol–lowering genetic variants and risk of type 2 diabetes: a meta-analysis. JAMA 316, 1383–1391 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Fuentes, F., Alcalá-Díaz, J. F., Watts, G. F. & Mata, P. Diabetes, statins and FH. Int. J. Cardiol. 203, 575 (2016).

    CAS  PubMed  Google Scholar 

  205. Besseling, J., Kastelein, J. J., Defesche, J. C., Hutten, B. A. & Hovingh, G. K. Association between familial hypercholesterolemia and prevalence of type 2 diabetes mellitus. JAMA 313, 1029–1036 (2015).

    CAS  PubMed  Google Scholar 

  206. Tsimikas, S., Gordts, P. L., Nora, C., Yeang, C. & Witztum, J. L. Statin therapy increases lipoprotein (a) levels. Eur. Heart J. https://doi.org/10.1093/eurheartj/ehz310 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Ward, N. C., Watts, G. F. & Eckel, R. H. Statin toxicity: mechanistic insights and clinical implications. Circ. Res. 124, 328–350 (2019).

    CAS  PubMed  Google Scholar 

  208. Stroes, E. S. et al. Statin-associated muscle symptoms: impact on statin therapy—European Atherosclerosis Society consensus panel statement on assessment, aetiology and management. Eur. Heart J. 36, 1012–1022 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Rosenson, R. S. et al. Optimizing cholesterol treatment in patients with muscle complaints. J. Am. Coll. Cardiol. 70, 1290–1301 (2017).

    PubMed  Google Scholar 

  210. Olsson, A. G. et al. Can LDL cholesterol be too low? Possible risks of extremely low levels. J. Intern. Med. 281, 534–553 (2017).

    CAS  PubMed  Google Scholar 

  211. Rosenson, R. S., Hegele, R. A. & Koenig, W. Cholesterol-lowering agents: PCSK9 inhibitors today and tomorrow. Circ. Res. 124, 364–385 (2019).

    CAS  PubMed  Google Scholar 

  212. Nissen, S. E. et al. Efficacy and tolerability of evolocumab vs ezetimibe in patients with muscle-related statin intolerance: the GAUSS-3 randomized clinical trial. JAMA 315, 1580–1590 (2016).

    CAS  PubMed  Google Scholar 

  213. Moriarty, P. M. et al. Efficacy and safety of alirocumab vs ezetimibe in statin-intolerant patients, with a statin rechallenge arm: the ODYSSEY ALTERNATIVE randomized trial. J. Clin. Lipidol. 9, 758–769 (2015).

    PubMed  Google Scholar 

  214. Sun, L. et al. Causal associations of blood lipids with risk of ischemic stroke and intracerebral hemorrhage in Chinese adults. Nat. Med. 25, 569 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Serban, M.-C. et al. Statin intolerance and risk of coronary heart events and all-cause mortality following myocardial infarction. J. Am. Coll. Cardiol. 69, 1386–1395 (2017).

    CAS  PubMed  Google Scholar 

  216. Nielsen, S. F. & Nordestgaard, B. G. Negative statin-related news stories decrease statin persistence and increase myocardial infarction and cardiovascular mortality: a nationwide prospective cohort study. Eur. Heart J. 37, 908–916 (2015).

    PubMed  Google Scholar 

  217. Aggarwal, N. R. et al. Sex differences in ischemic heart disease: advances, obstacles, and next steps. Circ. Cardiovasc. Qual. Outcomes 11, e004437 (2018).

    PubMed  Google Scholar 

  218. Amrock, S. M. et al. Health disparities among adult patients with a phenotypic diagnosis of familial hypercholesterolemia in the CASCADE-FH™ patient registry. Atherosclerosis 267, 19–26 (2017).

    CAS  PubMed  Google Scholar 

  219. Jacobson, T. A. et al. National Lipid Association recommendations for patient-centered management of dyslipidemia: part 2. J. Clin. Lipidol. 9, S1–S122.e1 (2015).

    PubMed  Google Scholar 

  220. Regitz-Zagrosek, V. et al. 2018 ESC guidelines for the management of cardiovascular diseases during pregnancy. Eur. Heart J. 39, 3165–3241 (2018).

    PubMed  Google Scholar 

  221. Lameijer, H. et al. Pregnancy in women with pre-existent ischaemic heart disease: a systematic review with individualised patient data. Heart 105, 873–880 (2019).

    PubMed  Google Scholar 

  222. Stefanutti, C. et al. Toward an international consensus—integrating lipoprotein apheresis and new lipid-lowering drugs. J. Clin. Lipidol. 11, 858–871.e3 (2017).

    PubMed  Google Scholar 

  223. France, M. et al. HEART UK statement on the management of homozygous familial hypercholesterolaemia in the United Kingdom. Atherosclerosis 255, 128–139 (2016).

    CAS  PubMed  Google Scholar 

  224. Li, W., Ruan, W., Lu, Z. & Wang, D. Parity and risk of maternal cardiovascular disease: a dose-response meta-analysis of cohort studies. Eur. J. Prev. Cardiol. 26, 592–602 (2019).

    PubMed  Google Scholar 

  225. Smith, C. J. et al. Maternal dyslipidemia and risk for preterm birth. PLOS ONE 13, e0209579 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Toleikyte, I., Retterstøl, K., Leren, T. P. & Iversen, P. O. Pregnancy outcomes in familial hypercholesterolemia - a registry-based study. Circulation 124, 1606–1614 (2011).

    PubMed  Google Scholar 

  227. Pieper, P. G. Use of medication for cardiovascular disease during pregnancy. Nat. Rev. Cardiol. 12, 718–729 (2015).

    CAS  PubMed  Google Scholar 

  228. Winterfeld, U. et al. Pregnancy outcome following maternal exposure to statins: a multicentre prospective study. BJOG 120, 463–471 (2013).

    CAS  PubMed  Google Scholar 

  229. Botha, T. C., Pilcher, G. J., Wolmarans, K., Blom, D. J. & Raal, F. J. Statins and other lipid-lowering therapy and pregnancy outcomes in homozygous familial hypercholesterolaemia: a retrospective review of 39 pregnancies. Atherosclerosis 277, 502–507 (2018).

    CAS  PubMed  Google Scholar 

  230. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02957604 (2019).

  231. Braamskamp, M. J. A. M. et al. Efficacy and safety of rosuvastatin therapy in children and adolescents with familial hypercholesterolemia: results from the CHARON study. J. Clin. Lipidol. 9, 741–750 (2015).

    PubMed  Google Scholar 

  232. Lázaro, P. et al. Cost-effectiveness of a cascade screening program for the early detection of familial hypercholesterolemia. J. Clin. Lipidol. 11, 260–271 (2017).

    PubMed  Google Scholar 

  233. Pelczarska, A. et al. The cost-effectiveness of screening strategies for familial hypercholesterolaemia in Poland. Atherosclerosis 270, 132–138 (2018).

    CAS  PubMed  Google Scholar 

  234. Benn, M., Tybjærg-Hansen, A. & Nordestgaard, B. G. Low LDL cholesterol by PCSK9 variation reduces cardiovascular mortality. J. Am. Coll. Cardiol. 73, 3102–3114 (2019).

    CAS  PubMed  Google Scholar 

  235. de Ferranti, S. D. et al. Cardiovascular risk reduction in high-risk pediatric patients: a scientific statement from the American Heart Association. Circulation 139, e603–e634 (2019).

    PubMed  Google Scholar 

  236. Ramaswami, U., Cooper, J. & Humphries, S. E. The UK paediatric familial hypercholesterolaemia register: preliminary data. Arch. Dis. Child. 102, 255–260 (2016).

    PubMed  PubMed Central  Google Scholar 

  237. Humphries, S. E., Cooper, J., Dale, P. & Ramaswami, U. The UK paediatric familial hypercholesterolaemia register: statin-related safety and 1-year growth data. J. Clin. Lipidol. 12, 25–32 (2018).

    PubMed  PubMed Central  Google Scholar 

  238. Vallejo-Vaz, A. J. et al. Pooling and expanding registries of familial hypercholesterolaemia to assess gaps in care and improve disease management and outcomes: rationale and design of the global EAS familial hypercholesterolaemia studies collaboration. Atheroscler. Suppl. 22, 1–32 (2016).

    PubMed  Google Scholar 

  239. Bellgard, M. I. et al. Design of the familial hypercholesterolaemia Australasia Network Registry: creating opportunities for greater international collaboration. J. Atheroscler. Thromb. 24, 1075–1084 (2017).

    PubMed  PubMed Central  Google Scholar 

  240. Ramaswami, U. et al. Current management of children and young people with heterozygous familial hypercholesterolaemia - HEART UK statement of care. Atherosclerosis 290, 1–8 (2019).

    CAS  PubMed  Google Scholar 

  241. Harada-Shiba, M. et al. Efficacy and safety of pitavastatin in children and adolescents with familial hypercholesterolemia in Japan and Europe. J. Atheroscler. Thromb. 25, 422–429 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Vuorio, A. et al. Statins for children with familial hypercholesterolemia. Cochrane Database Syst. Rev. 11, CD006401 (2019).

    Google Scholar 

  243. Mamann, N. et al. Intermediate-term efficacy and tolerance of statins in children. J. Pediatr. 210, 161–165 (2019).

    CAS  PubMed  Google Scholar 

  244. Kusters, D. M. et al. Efficacy and safety of ezetimibe monotherapy in children with heterozygous familial or nonfamilial hypercholesterolemia. J. Pediatr. 166, 1377–1384.e3 (2015).

    CAS  PubMed  Google Scholar 

  245. Sliwinski, S. K. et al. Transitioning from pediatric to adult health care with familial hypercholesterolemia: listening to young adult and parent voices. J. Clin. Lipidol. 11, 147–159 (2017).

    PubMed  Google Scholar 

  246. Stein, E. A. et al. Efficacy of rosuvastatin in children with homozygous familial hypercholesterolemia and association with underlying genetic mutations. J. Am. Coll. Cardiol. 70, 1162–1170 (2017).

    CAS  PubMed  Google Scholar 

  247. Gaudet, D. et al. Efficacy, safety, and tolerability of evolocumab in pediatric patients with heterozygous familial hypercholesterolemia: rationale and design of the HAUSER-RCT study. J. Clin. Lipidol. 12, 1199–1207 (2018).

    PubMed  Google Scholar 

  248. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02624869 (2019).

  249. Ben-Omran, T. et al. Real-world outcomes with lomitapide use in paediatric patients with homozygous familial hypercholesterolaemia. Adv. Ther. 36, 1786–1811 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Luirink, I. K. et al. Coronary computed tomography angiography and echocardiography in children with homozygous familial hypercholesterolemia. Atherosclerosis 285, 87–92 (2019).

    CAS  PubMed  Google Scholar 

  251. Luirink, I. K. et al. Efficacy and safety of lipoprotein apheresis in children with homozygous familial hypercholesterolemia: a systematic review. J. Clin. Lipidol. 13, 31–39 (2019).

    PubMed  Google Scholar 

  252. Thompson, G. & Parhofer, K. G. Current role of lipoprotein apheresis. Curr. Atheroscler. Rep. 21, 26 (2019).

    PubMed  PubMed Central  Google Scholar 

  253. Roeseler, E. et al. Lipoprotein apheresis for lipoprotein(a)-associated cardiovascular disease: prospective 5 years of follow-up and apo(a) characterization. Arterioscler. Thromb. Vasc. Biol. 36, 2019–2027 (2016).

    CAS  PubMed  Google Scholar 

  254. Drouin-Chartier, J.-P., Tremblay, A. J., Bergeron, J., Lamarche, B. & Couture, P. The low-density lipoprotein receptor genotype is a significant determinant of the rebound in low-density lipoprotein cholesterol concentration after lipoprotein apheresis among patients with homozygous familial hypercholesterolemia. Circulation 136, 880–882 (2017).

    CAS  PubMed  Google Scholar 

  255. Thompson, G. R. et al. Survival in homozygous familial hypercholesterolaemia is determined by the on-treatment level of serum cholesterol. Eur. Heart J. 39, 1162–1168 (2017).

    Google Scholar 

  256. Bruckert, E. et al. Long-term outcome in 53 patients with homozygous familial hypercholesterolaemia in a single centre in France. Atherosclerosis 257, 130–137 (2017).

    CAS  PubMed  Google Scholar 

  257. Stefanutti, C. et al. A cross-national investigation of cardiovascular survival in homozygous familial hypercholesterolemia: the Sino-Roman study. J. Clin. Lipidol. 13, 608–617 (2019).

    PubMed  Google Scholar 

  258. Ishigaki, Y. et al. Liver transplantation for homozygous familial hypercholesterolemia. J. Atheroscler. Thromb. 26, 121–127 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Martinez, M. et al. Effects of liver transplantation on lipids and cardiovascular disease in children with homozygous familial hypercholesterolemia. Am. J. Cardiol. 118, 504–510 (2016).

    CAS  PubMed  Google Scholar 

  260. Hegele, R. A. & Tsimikas, S. Lipid-lowering agents: targets beyond PCSK9. Circ. Res. 124, 386–404 (2019).

    CAS  PubMed  Google Scholar 

  261. Ray, K. K. et al. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N. Engl. J. Med. 376, 1430–1440 (2017).

    CAS  PubMed  Google Scholar 

  262. Gaudet, D. et al. Usefulness of gemcabene in homozygous familial hypercholesterolemia (from COBALT-1). Am. J. Cardiol. 124, 1876–1880 (2019).

    CAS  PubMed  Google Scholar 

  263. Fruchart, J.-C. et al. The selective peroxisome proliferator-activated receptor alpha modulator (SPPARMα) paradigm: conceptual framework and therapeutic potential. Cardiovasc. Diabetol. 18, 71 (2019).

    PubMed  PubMed Central  Google Scholar 

  264. Gaudet, D. et al. ANGPTL3 inhibition in homozygous familial hypercholesterolemia. N. Engl. J. Med. 377, 296–297 (2017).

    PubMed  Google Scholar 

  265. Ajufo, E. & Cuchel, M. Recent developments in gene therapy for homozygous familial hypercholesterolemia. Curr. Atheroscler. Rep. 18, 22 (2016).

    PubMed  PubMed Central  Google Scholar 

  266. Tsimikas, S. RNA-targeted therapeutics for lipid disorders. Curr. Opin. Lipidol. 29, 459–466 (2018).

    CAS  PubMed  Google Scholar 

  267. Graham, I. et al. New strategies for the development of lipid-lowering therapies to reduce cardiovascular risk. Eur. Heart J. Cardiovasc. Pharmacother. 4, 119–127 (2017).

    Google Scholar 

  268. Currie, G. & Delles, C. Precision medicine and personalized medicine in cardiovascular disease. Adv. Exp. Med. Biol. 1065, 589–605 (2018).

    PubMed  Google Scholar 

  269. Karimi-Shahanjarini, A. et al. Barriers and facilitators to the implementation of doctor-nurse substitution strategies in primary care: a qualitative evidence synthesis. Cochrane Database Syst. Rev. 5, CD010412 (2019).

    Google Scholar 

  270. Warden, B. A., Shapiro, M. D. & Fazio, S. The role of the clinical pharmacist in a preventive cardiology practice. Ann. Pharmacother. 53, 1214–1219 (2019).

    PubMed  Google Scholar 

  271. Cooke, J. A framework to evaluate research capacity building in health care. BMC Fam. Pract. 6, 44 (2005).

    PubMed  PubMed Central  Google Scholar 

  272. Peters, D. H., Tran, N. T. & Adam, T. Implementation research health: a practical guide. https://apps.who.int/iris/bitstream/handle/10665/91758/9789241506212_eng.pdf (WHO, 2013).

  273. Carman, K. L. et al. Patient and family engagement: a framework for understanding the elements and developing interventions and policies. Health Aff. 32, 223–231 (2013).

    Google Scholar 

  274. Payne, J. et al. Familial hypercholesterolaemia patient support groups and advocacy: a multinational perspective. Atherosclerosis 277, 377–382 (2018).

    CAS  PubMed  Google Scholar 

  275. Bangash, H., Khan, F., He, B., Arce, M. & Kullo, I. J. Use of Twitter to promote awareness of familial hypercholesterolemia. Circ. Genom. Precis. Med. 12, e002550 (2019).

    PubMed  Google Scholar 

  276. Baum, S. J. et al. PCSK9 inhibitor access barriers—issues and recommendations: improving the access process for patients, clinicians and payers. Clin. Cardiol. 40, 243–254 (2017).

    PubMed  PubMed Central  Google Scholar 

  277. Jones, L. K. et al. Healthcare utilization and patients’ perspectives after receiving a positive genetic test for familial hypercholesterolemia. Circ. Genom. Precis. Med. 11, e002146 (2018).

    PubMed  Google Scholar 

  278. World Health Organization. Familial hypercholesterolaemia (FH): report of a WHO consultation. https://apps.who.int/iris/bitstream/handle/10665/64162/WHO_HGN_FH_CONS_98.7.pdf (WHO, 1997).

  279. Bufalino, V. J. et al. The American Heart Association’s recommendations for expanding the applications of existing and future clinical registries. Circulation 123, 2167–2179 (2011).

    PubMed  Google Scholar 

  280. Mundal, L. J. et al. Impact of age on excess risk of coronary heart disease in patients with familial hypercholesterolaemia. Heart 104, 1600–1607 (2018).

    PubMed  PubMed Central  Google Scholar 

  281. Ruel, I. et al. Simplified Canadian definition for familial hypercholesterolemia. Can. J. Cardiol. 34, 1210–1214 (2018).

    PubMed  Google Scholar 

  282. Pang, J. et al. Comparative aspects of the care of familial hypercholesterolemia in the “Ten Countries Study”. J. Clin. Lipidol. 13, 287–300 (2019).

    PubMed  Google Scholar 

  283. Barton Duell, P. et al. Longitudinal low density lipoprotein cholesterol goal achievement and cardiovascular outcomes among adult patients with familial hypercholesterolemia: the CASCADE FH registry. Atherosclerosis 289, 85–93 (2019).

    PubMed  Google Scholar 

  284. Saltijeral, A. et al. Attainment of LDL cholesterol treatment goals in children and adolescents with familial hypercholesterolemia: the SAFEHEART follow-up registry. Rev. Esp. Cardiol. 70, 444–450 (2017).

    PubMed  Google Scholar 

  285. Ellis, K. L., Pang, J. & Watts, G. F. Registries, codifications and cardiovascular outcomes in familial hypercholesterolaemia. Eur. J. Prev. Cardiol. 24, 133–136 (2016).

    PubMed  Google Scholar 

  286. Gee, M. & Cooke, J. How do NHS organisations plan research capacity development? Strategies, strengths, and opportunities for improvement. BMC Health Serv. Res. 18, 198 (2018).

    PubMed  PubMed Central  Google Scholar 

  287. Martin, A. C., Gidding, S. S., Wiegman, A. & Watts, G. F. Known and unknowns in the care of paediatric familial hypercholesterolaemia. J. Lipid Res. 58, 1765–1776 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  288. Pang, J., Lansberg, P. J. & Watts, G. F. International developments in the care of familial hypercholesterolemia: where now and where to next? J. Atheroscler. Thromb. 23, 505–519 (2016).

    CAS  PubMed  Google Scholar 

  289. Guyatt, G. H. et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. Br. Med. J. 336, 924–926 (2008).

    Google Scholar 

  290. Vallejo-Vaz, A. J. et al. Familial hypercholesterolaemia: a global call to arms. Atherosclerosis 243, 257–259 (2015).

    CAS  PubMed  Google Scholar 

  291. deGoma, E. M. et al. Treatment gaps in adults with heterozygous familial hypercholesterolemia in the United States: data from the CASCADE-FH Registry. Circ. Cardiovasc. Genet. 9, 240–249 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  292. Bauer, M. S., Damschroder, L., Hagedorn, H., Smith, J. & Kilbourne, A. M. An introduction to implementation science for the non-specialist. BMC Psychol. 3, 32 (2015).

    PubMed  PubMed Central  Google Scholar 

  293. Chambers, D. A., Feero, W. G. & Khoury, M. J. Convergence of implementation science, precision medicine, and the learning health care system: a new model for biomedical research. JAMA 315, 1941–1942 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  294. Glasgow, R. E., Vogt, T. M. & Boles, S. M. Evaluating the public health impact of health promotion interventions: the RE-AIM framework. Am. J. Public Health 89, 1322–1327 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  295. Feldstein, A. C. & Glasgow, R. E. A practical, robust implementation and sustainability model (PRISM) for integrating research findings into practice. Jt. Comm. J. Qual. Patient Saf. 34, 228–243 (2008).

    PubMed  Google Scholar 

  296. Jones, L. K. et al. Developing implementation strategies to improve uptake of guideline-recommended treatments for individuals with familial hypercholesterolemia: a protocol. Res. Soc. Adm. Pharm. https://doi.org/10.1016/j.sapharm.2019.06.006 (2019).

  297. World Health Organization. Familial hypercholesterolaemia (FH): report of a second WHO consultation. https://apps.who.int/iris/bitstream/handle/10665/66346/WHO_HGN_FH_CONS_99.2.pdf (WHO, 1999).

Download references

Author information

Authors and Affiliations

Authors

Contributions

G.F.W. and J.P. researched data for the article, and all authors contributed to discussions of its content. G.F.W. wrote the manuscript, and all authors reviewed and edited it before submission.

Corresponding author

Correspondence to Gerald F. Watts.

Ethics declarations

Competing interests

The authors received no financial support for the research, authorship or publication of this article. G.F.W. has received honoraria as a consultant on advisory boards and research grants from Amgen, Regeneron Pharmaceuticals and Sanofi. S.S.G. has received research grants from the US National Institutes of Health and is employed by the FH Foundation. P.M. has received research grants from Amgen and Sanofi. J.P. was supported by a WAHTN Early Career Fellowship and the Australian Government’s Medical Research Future Fund. D.R.S. has received grants from Amarin, Amgen, AstraZeneca, Espirion, Novartis and Regeneron Pharmaceuticals, as well as personal fees from Amgen and Sanofi. S.Y. has received grants and personal fees from Astellas Pharma, AstraZeneca, Bayer Yakuhin, Daiichi Sankyo, Hayashibara, Izumisano City, Japan Tobacco, Kaizuka City, Kaken Pharmaceutical, Kissei Pharmaceutical, Kowa, Kyowa Medex, Merck Sharp & Dohme, Mochida Pharmaceutical, the Japanese National Institute of Biomedical Innovation, Nippon Boehringer Ingelheim, Otsuka Pharmaceutical, Sanwa Kagaku Kenkyusho, Shionogi, Takeda Pharmaceutical and Teijin Pharma, as well as personal fees from Amgen Astellas BioPharma, Astellas Pharma, AstraZeneca, Bayer Yakuhin, Bristol-Myers Squibb, Daiichi Sankyo, Kaken Pharmaceutical, Medical Review, Merck Sharp & Dohme, Ono Pharmaceutical, Otsuka Pharmaceutical, Pfizer Japan, Sanofi, Sanwa Kagaku Kenkyusho, Shionogi, Skylight Biotech, Takeda Pharmaceutical and Toa Eiyo. F.J.R. has received research grants from Amgen, Sanofi and Regeneron Pharmaceuticals, has participated in speakers’ bureaus for and received honoraria from Amgen, Regeneron Pharmaceuticals, Sanofi and The Medicines Company, and is a consultant on advisory boards for Amgen, Regeneron Pharmaceuticals, Sanofi and The Medicines Company. R.D.S. is a recipient of a scholarship from the Conselho Nacional de Pesquisa e Desenvolvimento Tecnologico (CNPq) process no. 303734/2018-3 and has received honoraria for consulting, research and speaker activities from Ache, Akcea, Amgen, AstraZeneca, Esperion, Kowa, Merck, Novo-Nordisk, Pfizer and Sanofi/Regeneron Pharmaceuticals. K.K.R. has received research grants from Amgen, Merck Sharp & Dohme, Pfizer, Regeneron and Sanofi, as well as honoraria for lectures, being a consultant on advisory boards and/or as a steering committee member from Amgen, AstraZeneca, Boehringer Ingelheim, Esperion, IONIS, Kowa, Lilly, Pfizer, Regeneron Pharmaceuticals, Sanofi, Takeda and The Medicines Company.

Additional information

Peer review information

Nature Reviews Cardiology thanks R. Hegele, L. Ose and E. Stein for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Review criteria

A search was undertaken of the literature published in the English language between January 2014 and September 2019. The search used the PubMed database with search string (all fields) ‘familial hypercholesterolemia’ or ‘familial hypercholesterolaemia’. Additional published studies were provided ad hoc by individual authors. G.F.W. and J.P. assessed the titles and abstracts of all the articles identified and selected those that were novel and most useful for informing the components of the model of care for familial hypercholesterolaemia. The other authors approved this selection and supplied additional articles that added value to those identified in the literature review.

Related links

ClinVar database: https://www.ncbi.nlm.nih.gov/clinvar/

European Atherosclerosis Society Familial Hypercholesterolaemia Studies Collaboration: https://www.eas-society.org/page/fhsc

European FH Patient Network: https://fheurope.org/

FH Foundation: https://thefhfoundation.org/

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watts, G.F., Gidding, S.S., Mata, P. et al. Familial hypercholesterolaemia: evolving knowledge for designing adaptive models of care. Nat Rev Cardiol 17, 360–377 (2020). https://doi.org/10.1038/s41569-019-0325-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-019-0325-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing