Skip to main content
Log in

Homogenization of Solute Transport in Unsaturated Double-Porosity Media: Model and Numerical Validation

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The development of a macroscopic model for solute transport coupled with unsaturated water flow in double-porosity media is presented in this work, by using the asymptotic homogenization method. The model was derived for the case in which the medium exhibits a strong contrast of transport properties by upscaling rigorously the transport mechanisms from micro-scale to macro-scale. It consists of two coupled equations for dispersion–convection processes at macroscopic level and diffusion intervention from local scale that can be described by a non-Fickian behaviour of solute concentration breakthrough. The proposed model was numerically implemented in the environment of a finite element code (commercial software) and applied to 2D examples with different boundary conditions. To validate, a comparative analysis between the results obtained from the homogenized model and the fine scale model (reference solution obtained from explicit heterogeneous representation of the medium structure) was carried out. The obtained numerical tool for the two-scale implementation enables treating various types of two-equation models to study the macroscopic non-Fickian transport and also non-equilibrium evolution of concentration fields inside the micro-porous medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmadi, A., Quintard, M., Whitaker, S.: Transport in chemically and mechanically heterogeneous porous media. V: two-equation model for solute transport with adsorption. Adv. Water Res. 22, 59–86 (1998)

    Google Scholar 

  • Andricevic, R.: Effects of local dispersion and sampling volume on the evolution of concentration fluctuations in aquifers. Water Resour. Res. 34, 1115–1129 (1998)

    Google Scholar 

  • Auriault, J.L.: Effective macroscopic description for heat conduction in periodic composites. Int. J. Heat Mass Transf. 26(6), 861–869 (1983)

    Google Scholar 

  • Auriault, J.L.: Heterogeneous medium is an equivalent macroscopic description possible? Int. J. Eng. Sci. 29, 785–795 (1991)

    Google Scholar 

  • Auriault, J., Adler, P.: Taylor dispersion in porous media: analysis by multiple scale expansions. Adv. Water Res. 18, 217–226 (1995)

    Google Scholar 

  • Auriault, J.L., Lewandowska, J.: Non-Gaussian diffusion modeling in composite porous media by homogenization: tail effect. Transp. Porous Med. 21, 47–70 (1995)

    Google Scholar 

  • Auriault, J.L., Lewandowska, J.: Diffusion/adsorption/advection macrotransport in soils. Eur. J. Mech. A/Solids 15(4), 681–704 (1996)

    Google Scholar 

  • Auriault, J.L., Boutin, C., Geindreau, C.: Homogenization of Coupled Phenomena in Heterogeneous Media. Wiley-ISTE, London (2009)

    Google Scholar 

  • Barenblatt, G., Zheltov, I., Kochina, I.: Basic concepts in the theory of seepage of homogeneous liquids in the fissured rocks. J. Appl. Math. 24(5), 1286–1303 (1960)

    Google Scholar 

  • Barenblatt, G.I.: On certain boundary-value-problems for the equations of seepage of liquid in fissured rocks. PMM 27(2), 348–350 (1963)

    Google Scholar 

  • Bear, J.: Dynamics of fluids in porous media. Elsevier, New York (1972)

    Google Scholar 

  • Bensoussan, A., Lions, J., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978)

    Google Scholar 

  • Berkowitz, B., Emmanuel, S., Scher, H.: Non-Fickian transport and multiplerate mass transfer in porous media. Water Resour. Res. 44, W03402 (2008)

    Google Scholar 

  • Berkowitz, B., Scher, H.: Exploring the nature of non-Fickian transport in laboratory experiments. Adv. Water Res. 32, 750–755 (2009)

    Google Scholar 

  • Berkowitz, B., Scher, H., Silliman, S.E.: Anomalous transport in laboratory-scale, heterogeneous porous media. Water Resour. Res. 36, 149–158 (2000)

    Google Scholar 

  • Brassart, L., Stainier, L.: Effective transient behaviour of heterogeneous media in diffusion problems with a large contrast in the phase diffusivities. J. Mech. Phys. Solids 124, 366–391 (2019)

    Google Scholar 

  • Cherblanc, F., Ahmadi, A., Quintard, M.: Two-medium description of dispersion in heterogeneous porous media: calculation of macroscopic properties. Water Resour. Res. 39(6), 1559–1579 (2003)

    Google Scholar 

  • Cherblanc, F., Ahmadi, A., Quintard, M.: Two-domain description of solute transport in heterogeneous porous media: comparison between theoretical predictions and numerical experiments. Adv. Water Res. 30, 1127–1143 (2007)

    Google Scholar 

  • Coats, K., Smith, B.: Dead-end pore volume and dispersion in porous media. Soc. Pet. Eng. J. 3, 73–84 (1964)

    Google Scholar 

  • Cremer, C.J.M., Neuweiler, I., Bechtold, M., Vanderborght, J.: Solute transport in heterogeneous soil with time-dependent boundary conditions. Vadose Zone J. 15(6), 1–17 (2016)

    Google Scholar 

  • Cushman, J.H., Tartakovsky, D.M.: The Handbook of Groundwater Engineering, 3rd edn. CRC Press, Boca Raton (2016)

    Google Scholar 

  • Dagan, G.: Solute transport in heterogeneous porous formations. J. Fluid Mech. 145, 151–177 (1984)

    Google Scholar 

  • Dagan, G., Russo, D., Bresler, E.: Effect of spatial variability upon subsurface transport of solutes from nonpoint sources. In: DeCoursey, D.G. (Ed.), International Symposium on Water Quality Modeling of Agricultural Nonpoint Sources Washington DC 1990, pp. 523–548. USDA–Agricultural Research Service

  • Dalla Costa, C.: Transferts d’un traceur en milieu poreux consolide et en milieu poreux fissure: Expérimentations et modélisations. Ph.D. thesis, Université Joseph Fourier-Grenoble, France (2007)

  • Dartois, A., Beaudoin, A., Serge, H.: Impact of local diffusion on macroscopic dispersion in three-dimensional porous media. Comptes R. Mec. 346, 89–97 (2018)

    Google Scholar 

  • Davit, Y., Quintard, M.: Technical notes on volume averaging in porous media I: how to choose a spatial averaging operator for periodic and quasi periodic structures. Transp. Porous Med. 119(3), 555–584 (2017)

    Google Scholar 

  • de Marsily, G., Delay, F., Gonçalvès, J., Renard, P., Teles, V., Violette, S.: Dealing with spatial heterogeneity. Hydrogeol. J. 13, 161–183 (2005)

    Google Scholar 

  • de Vries, E.T., Raoof, A., van Genuchten, M.T.: Multiscale modelling of dual-porosity porous media; a computational pore-scale study for flow and solute transport. Adv. Water Res. 105, 82–95 (2017)

    Google Scholar 

  • Doughty, C., Moridis, G.J.: Editorial to the special issue on the 2015 TOUGH Symposium. Transp. Porous Med 123(3), 455–456 (2018)

    Google Scholar 

  • Fiori, A.: On the influence of local dispersion in solute transport through formations with evolving scales of heterogeneity. Water Resour. Res. 37, 235–242 (2001)

    Google Scholar 

  • Fried, J.J., Combarnous, M.A.: Dispersion in porous media. In: Chen, V.T. (ed.) Advances in Hydroscience, vol. 7, pp. 169–282. Elsevier, New York (1971)

    Google Scholar 

  • Gaudet, J.P., Jégat, H., Vachaud, G., Wierenga, P.J.: Solute transfer, with exchange between mobile and stagnant water through unsaturated sand. Soil Sci. Soc. Am. J. 41, 665–671 (1977)

    Google Scholar 

  • Gaudet, J.-P., Jegat, H., Vachaud, G.: Étude du mécanisme des transferts d’eau et de soluté en zone non saturée avec prise en compte d’une fraction liquide immobile. Houille Blanche 3(4), 243–251 (1976)

    Google Scholar 

  • Gensterblum, Y., Ghanizadeh, A., Cuss, R.J., Amann-Hildenbrand, A., Krooss, B.M., Clarkson, C.R., Harrington, J.F., Zoback, M.D.: Gas transport and storage capacity in shale gas reservoirs—a review. Part A: transport processes. J. Unconv. Oil Gas Resour. 12, 87–122 (2015)

    Google Scholar 

  • Gerke, H.H.: Preferential flow description for structured soils. J. Plant Nutr. Soil Sci. 169, 382–400 (2006)

    Google Scholar 

  • Gerke, H.H., van Genuchten, M.T.: A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media. Water Resour. Res. 29, 305–319 (1993)

    Google Scholar 

  • Golfier, F., Quintard, M., Cherblanc, F., Zinn, B.A., Wood, B.: Comparison of theory and experiment for solute transport in highly heterogeneous porous medium. Adv. Water Res. 30, 2235–2261 (2007)

    Google Scholar 

  • Golfier, F., Quintard, M., Wood, B.: Comparison of theory and experiment for solute transport in weakly heterogeneous bimodal porous media. Adv. Water Res. 34, 899–914 (2011)

    Google Scholar 

  • Ha, N.H., Bui, H.H., Nguyen, T.D., Le, N.S., Phan, N.T.: Development of a dual-porosity model for “Bach Ho” fractured basement reservoir. SOCAR Proc. 4, 12–20 (2015)

    Google Scholar 

  • Hornung, U.: Homogenization of miscible displacement in unsaturated aggregated soils. In: Dynamical Systems. St. Petersburg (1991)

  • Huyakorn, P., Lester, B.H., Mercer, J.W.: An efficient finite element technique for modeling transport in fractured porous media. 1. Single species transport. Water Resour. Res. 19(3), 841–854 (1983)

    Google Scholar 

  • Jankovic, I., Fiori, A., Dagan, G.: The impact of local diffusion on longitudinal macrodispersivity and its major effect upon anomalous transport in highly heterogeneous aquifers. Adv. Water Res. 32, 659–669 (2009)

    Google Scholar 

  • Jarvis, N., Koestel, J., Larsbo, M.: Understanding preferential flow in the vadose zone: recent advances and future prospects. Vadose Zone J. 15(12), 1–11 (2016)

    Google Scholar 

  • Jougnot, D., Lewandowska, J., Gotteland, P., Revil, A.: Hydraulic conductivity of unsaturated double porosity geomaterials. In: The 11th Baltic Sea Geotechnical Conference “Geotechnics in Maritime Engineering”. Gdansk, Poland (2008)

  • Köhne, J.M., Köhne, S., Šimůnek, J.: A review of model applications for structured soils: a) water flow and tracer transport. J. Contam. Hydrol. 104, 4–35 (2009)

    Google Scholar 

  • Lewandowska, J., Szymkiewicz, A., Burzynski, K., Vauclin, M.: Modeling of unsaturated water flow in double-porosity soils by the homogenization approach. Adv. Water Res. 27, 283–296 (2004)

    Google Scholar 

  • Lewandowska, J., Szymkiewicz, A., Gorczewska, W., Vauclin, M.: Infiltration in a double-porosity medium: experiments and comparison with a theoretical model. Water Resour. Res. 41(2), 1–14 (2005)

    Google Scholar 

  • Lewandowska, J., Tran Ngoc, T.D., Vauclin, M., Bertin, H.: Water drainage in double porosity soils: experiments and micro-macro modelling. ASCE J. Geotech. Geoenviron. Eng. 134(2), 231–243 (2008)

    Google Scholar 

  • Majdalani, S., Chazarin, J.P., Delenne, C., Guinot, V.: Solute transport in periodical heterogeneous porous media: importance of observation scale and experimental sampling. J. Hydrol. 520, 52–60 (2015)

    Google Scholar 

  • Mikelic, A., Rosier, C.: Modeling solute transport through unsaturated porous media using homogenization I. Comput. Appl. Math. 23(2–3), 195–211 (2004)

    Google Scholar 

  • Ngien, S.K., Rahman, N.A., Bob, M.M., Ahmad, K., Sa’ari, R., Lewis, R.W.: Observation of light non-aqueous phase liquid migration in aggregated soil using image analysis. Transp. Porous Med 92, 83–100 (2012)

    Google Scholar 

  • Ngo, T.S.: Kỳ tích tìm dầu ở tầng đá móng. Tia Sáng (in Vietnamese) (2002)

  • Niessner, J., Helmig, R.: Multi-scale modeling of three-phase–three-component processes in heterogeneous porous media. Adv. Water Res. 30(11), 2309–2325 (2007)

    Google Scholar 

  • Peng, Z., Duwig, C., Delmas, P., Gaudet, J.P., Gastelum Strozzi, A., Charrier, P., Denis, H.: Visualization and characterization of heterogeneous water flow in double-porosity media by means of X-ray computed tomography. Transp. Porous Med. 110(3), 543–564 (2015)

    Google Scholar 

  • Peszynska, M., Showalter, R.: Multiscale elliptic-parabolic systems for flow and transport. Electron. J. Differ. Equ. 147, 1–30 (2007)

    Google Scholar 

  • Portois, C., Boeije, C.S., Bertin, H., Atteia, O.: Foam for environmental remediation: generation and blocking effect. Transp. Porous Med. 124(3), 787–801 (2018)

    Google Scholar 

  • Pruess, K., Narasimhan, T.N.: A practical method for modeling fluid and heat flow in fractured porous media. In: Paper Presented at the Sixth SPE Symposium on Reservoir Simulation, New Orleans, Louisiana (1982)

  • Quintard, M., Whitaker, S.: Two-phase flow in heterogeneous porous media: the method of large scale averaging. Transp. Porous Med. 3, 357–413 (1988)

    Google Scholar 

  • Richards, L.: Capillary conduction of liquids through porous medium. Physics 1, 318–333 (1931)

    Google Scholar 

  • Royer, P., Auriault, J.L., Boutin, C.: Macroscopic modeling of double-porosity reservoirs. J. Pet. Sci. Eng. 16, 187–202 (1996)

    Google Scholar 

  • Royer, P., Auriault, J.L., Lewandowska, J., Serres, C.: Continuum modelling of contaminant transport in fractured porous media. Transp. Porous Med. 49, 333–359 (2002)

    Google Scholar 

  • Royer, P., Boutin, C.: Time analysis of the three characteristic behaviours of dual-porosity media. I: fluid flow and solute transport. Transp. Porous Med 95(3), 603–626 (2012)

    Google Scholar 

  • Sanchez-Palencia, E.: Non-homogeneous media and vibration theory. Lecture Notes in Physics, vol. 127. Springer-Verlag, Berlin (1980)

    Google Scholar 

  • Schoen, R., Gaudet, J.P., Elrickb, D.E.: Modelling of solute transport in a large undisturbed lysimeter, during steady-state water flux. J. Hydrol. 215, 82–93 (1999)

    Google Scholar 

  • Šimůnek, J., Jarvis, N., van Genuchten, M.T., Gardenas, A.: Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone. J. Hydrol. 272, 14–35 (2003)

    Google Scholar 

  • Šimůnek, J., van Genuchten, M.T.: Modeling non-equilibrium flow and transport processes using Hydrus. Vadose Zone J. 7, 782–797 (2008)

    Google Scholar 

  • Sternberg, S.P.K., Cushman, J., Greenkorn, R.A.: Laboratory observation of nonlocal dispersion. Transp. Porous Med. 23, 135–151 (1996)

    Google Scholar 

  • Sudicky, E.: A natural gradient experiment on solute transport in a sand aquifer: spatial variability of hydraulic conductivity and its role in the dispersion process. Water Resour. Res. 22, 2069–2082 (1986)

    Google Scholar 

  • Szymkiewicz, A.: Modelling Water Flow in Unsaturated Porous Media. Accounting for Nonlinear Permeability and Material Heterogeneity. GeoPlanet: Earth and Planetary Sciences. Springer-Verlag, Berlin (2013)

    Google Scholar 

  • Szymkiewicz, A., Lewandowska, J., Angulo-Jaramillo, R., Butlanska, J.: Two scale modeling of unsaturated water flow in a double-porosity medium under axi-symmetric conditions. Can. Geotech. J. 45, 238–251 (2008)

    Google Scholar 

  • Tejchman, M.: Solute transport through single and dual porosity media. Mathematical modelling by homogenisation and column experimental investigations. Ph.D. thesis, Université Joseph Fourier-Grenoble, France (2004)

  • Tran Ngoc, T.D.: Transport de solutés dans un milieu à double-porosité non saturé. Modélisation par homogénéisation et application. Ph.D. thesis, Université Joseph Fourier-Grenoble, France (2008)

  • Tran Ngoc, T.D., Lewandowska, J., Bertin, H.: Experimental evidence of the double-porosity effects in geomaterials. Acta Geophys. 62(3), 642–655 (2014)

    Google Scholar 

  • Tran Ngoc, T.D., Lewandowska, J., Vauclin, M., Bertin, H.: Two-scale model of solute dispersion in double-porosity unsaturated media: homogenization and experiments. Int. J. Numer. Anal. Meth. Geomech. 35, 1536–1559 (2011)

    Google Scholar 

  • van Genuchten, M.T., Parker, J.C.: Boundary conditions for displacement experiments through short laboratory soil columns 1. Soil Sci. Soc. Am. J. 48(4), 703–708 (1984)

    Google Scholar 

  • van Genuchten, M.T., Wierenga, P.J.: Mass transfer studies in sorbing porous media: I. Analytical solutions. Soil Sci. Soc. Am. J. 40, 473–480 (1976)

    Google Scholar 

  • Warren, J.E., Root, P.J.: The behavior of naturally fractured reservoirs. J. Soc. Pet. Eng. 3, 245–255 (1963)

    Google Scholar 

  • Whitaker, S.: Diffusion and reaction in a micropore-macropore model of a porous medium. Lat. Am. J. Appl. Chem. Eng. 13, 143–183 (1983)

    Google Scholar 

  • Whitaker, S.: The Method of Averaging. Springer, Dordrecht (1999)

    Google Scholar 

  • Wu, T., Li, X., Zhao, J., Zhang, D.: Multiscale pore structure and its effect on gas transport in organic-rich shale. Water Resour. Res. 53, 1–13 (2017)

    Google Scholar 

  • Zinn, B., Meigs, L.C., Harvay, C.F., Haggerty, R., Peplinski, W.J., von Schwerin, C.F.: Experiments visualization of solute transport and mass transfer processes in two dimensional conductivity fields with connected regions of high conductivity. Environ. Sci. Technol. 38, 3916–3926 (2004)

    Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 107.01-2015.25. The first author is greatly indebted to Prof. Jolanta Lewandowska, Université de Montpellier for supervising his Ph.D. thesis in which the method of homogenization has been comprehended. We would like to thank the anonymous reviewers for their valuable suggestions and comments. Funding was provided by NAFOSTED (Grant No. 107.01-2015.25).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. D. Tran Ngoc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran Ngoc, T.D., Le, N.H.N., Tran, T.V. et al. Homogenization of Solute Transport in Unsaturated Double-Porosity Media: Model and Numerical Validation. Transp Porous Med 132, 53–81 (2020). https://doi.org/10.1007/s11242-020-01380-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-020-01380-6

Keywords

Navigation