Skip to main content
Log in

Oxidation of Fine Tantalum Particles: Metastable Intermediates and Multistep Kinetics

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The metastable tantalum suboxides have been found to be a cause of complicated oxidation behaviour of fine tantalum particles when heated in air at moderate temperatures. Fine Ta 0.02–10 μm particles of bimodal size distribution with average volume maxima of 0.12 and 4 μm were prepared via electric explosion of thin Ta wire in Ar atmosphere. The oxidation reaction proceeded via several intermediate suboxides (Ta6O, Ta4O, Ta2O and TaO2) in which chemical and structure transformations caused multistep kinetics of the oxidation process in a narrow temperature interval of 250–570 °C. Within the interval of 250–400 °C, the oxidation process occurred under diffusion control with an apparent activation energy Ea,1 = 31.6 ± 1.2 kJ/mol and the main oxidation products were Ta(O) solid solutions and suboxides Ta6O and Ta4O. In the interval of 400–520 °C, oxidation was accompanied by a low-barrier martensite-like transformation of the lower suboxides resulting in reducing of diffusion limitations of the process (Ea,2 = 4.8 ± 1.2 kJ/mol). In the interval of 520–570 °C, oxidation of the larger Ta particles was completed to form Ta2O (Ea,3 = 64.7 ± 1.9 kJ/mol). An abrupt decay of Ta2O at temperatures greater than ~ 570 °C induced the high-rate oxidation of micron-sized Ta particles, resulting in self-heating of the sample.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. J. R. Davis (ed.), Heat-Resistant Materials, (ASM International, Materials Park, 1997), p. 597.

    Google Scholar 

  2. W. Martienssen and H. Warlimont (eds.), Springer Handbook of Condensed Matter and Materials Data, (Springer, Berlin, 2005), p. 1121.

    Google Scholar 

  3. O. D. Neikov, S. S. Naboychenko and N. A. Yefimov, Handbook of Non-Ferrous Metal Powders: Technologies and Applications, 2nd ed, (Elsevier, New York, 2019), p. 995. https://doi.org/10.1016/C2014-0-03938-X.

    Book  Google Scholar 

  4. J. M. Sanz and S. Hofmann, Auger electron spectroscopy and x-ray photoelectron spectroscopy studies of the oxidation of polycrystalline tantalum and niobium at room temperature and low oxygen pressures. Journal of the Less Common Metals92, 317–327 (1983). https://doi.org/10.1016/0016-7037(94)90508-8.

    Article  CAS  Google Scholar 

  5. S. Lecuyer, A. Quernerais and G. Jezequel, Composition of natural oxide films on polycrystalline tantalum using XPS electron take-off angle experiments. Surface and Interface Analysis18, 257–261 (1992). https://doi.org/10.1002/sia.740180403.

    Article  CAS  Google Scholar 

  6. J. G. S. Moo, Z. Awaludin, T. Okajima and T. Ohsaka, An XPS depth-profile study on electrochemically deposited TaOx. The Journal of Solid State Electrochemistry17, 3115–3123 (2013). https://doi.org/10.1007/s10008-013-2216-y.

    Article  CAS  Google Scholar 

  7. M. Khanuja, H. Sharma, B. R. Mehta and S. M. Shivaprasad, XPS depth-profile of the suboxide distribution at the native oxide/Ta interface. The Journal of Electron Spectroscopy and Related Phenomena169, 41–45 (2009). https://doi.org/10.1016/j.elspec.2008.10.004.

    Article  CAS  Google Scholar 

  8. K. Wang, Z. Liu, T. H. Cruz, M. Salmeron and H. Liang, In situ spectroscopic observation of activation and transformation of tantalum suboxides. The Journal of Physical Chemistry A114, 2489–2497 (2010). https://doi.org/10.1021/jp910964s.

    Article  CAS  Google Scholar 

  9. J. T. Waber, G. E. Sturdy, E. M. Wise and C. R. Tipton, A spectrophotometric study of the oxidation of tantalum. Journal of the Electrochemical Society99, 121–129 (1952). https://doi.org/10.1149/1.2779673.

    Article  CAS  Google Scholar 

  10. D. A. Vermilyea, The oxidation of tantalum at 50–300 °C. Acta Metallurgica6, 166–171 (1958). https://doi.org/10.1016/0001-6160(58)90003-8.

    Article  CAS  Google Scholar 

  11. O. Kubaschewski and B. E. Hopkins, Oxidation mechanisms of niobium, tantalum, molybdenum and tungsten. Journal of the Less Common Metals2, 172–180 (1960). https://doi.org/10.1016/0022-5088(60)90012-6.

    Article  CAS  Google Scholar 

  12. P. Kofstad, High-Temperature Oxidation of Metals, (Wiley, New York, 1966).

    Google Scholar 

  13. J. V. Cathcart, R. Bakish and D. R. Norton, Oxidation properties of tantalum between 400 and 530 °C. Journal of the Electrochemical Society107, 668–670 (1960). https://doi.org/10.1149/1.2427805.

    Article  CAS  Google Scholar 

  14. J. T. Waber, On the cubic law of oxidation. The Journal of Chemical Physics20, 734–735 (1952). https://doi.org/10.1063/1.1700525.

    Article  CAS  Google Scholar 

  15. N. Schönberg, An X-ray investigation of the tantalum-oxygen system. Acta Chemica Scandinavica8, 240–245 (1954). https://doi.org/10.3891/acta.chem.scand.08-0240.

    Article  Google Scholar 

  16. N. Norman, Metallic oxide phases of niobium and tantalum I. X-ray investigations. Journal of the Less Common Metals4, 52–61 (1962). https://doi.org/10.1016/0022-5088(62)90059-0.

    Article  CAS  Google Scholar 

  17. J. N. Ong and W. M. Fassel, Kinetics of oxidation of columbium and other refractory metals. Corrosion18, 382t–389t (1962).

    Article  CAS  Google Scholar 

  18. S. Steeb and J. Renner, Ermittlung der struktur des tantalsuboxides TaOz (Ta2O) mittels elektronenbeugung. Journal of the Less Common Metals9, 181–189 (1965). https://doi.org/10.1016/0022-5088(65)90095-0.

    Article  CAS  Google Scholar 

  19. J. Niebuhr, Die niederen oxide des tantals. Journal of the Less Common Metals10, 312–322 (1966). https://doi.org/10.1016/0022-5088(66)90131-7.

    Article  CAS  Google Scholar 

  20. L. L. Y. Chang and B. Phillips, Phase relations in refractory metal-oxygen systems. Journal of the American Ceramic Society52, 527–533 (1969). https://doi.org/10.1111/j.1151-2916.1969.tb09158.x.

    Article  CAS  Google Scholar 

  21. S. P. Garg, N. Krishnamurthy, A. Awasthi and M. Venkatraman, The O-Ta (oxygen-tantalum) system. Journal of Phase Equilibria17, 63–77 (1996). https://doi.org/10.1007/BF02648373.

    Article  CAS  Google Scholar 

  22. I. McKee and G. R. Wallwork, The oxidation of tantalum and niobium in the temperature range 400°–600°C. Journal of the Less Common Metals30, 249–258 (1973).

    Article  CAS  Google Scholar 

  23. R. E. Pawel, J. V. Cathcart and J. J. Campbell, Microtopography of oxide films formed on tantalum. Journal of the Electrochemical Society107, 956–960 (1960). https://doi.org/10.1016/0022-5088(73)90111-2.

    Article  CAS  Google Scholar 

  24. J. E. Boggio and H. E. Farnsworth, Low energy electron diffraction study of the formation of TaO(111) on Ta(110). Surface Science3, 62–70 (1964). https://doi.org/10.1016/0039-6028(65)90019-1.

    Article  CAS  Google Scholar 

  25. J. B. DeLisio, X. Wang, T. Wu, G. C. Egan, R. J. Jacob and M. R. Zachariah, Investigating the oxidation mechanism of tantalum nanoparticles at high heating rates. Journal of Applied Physics122, 245901(1–8) (2017). https://doi.org/10.1063/1.4995574.

    Article  CAS  Google Scholar 

  26. J. Van Landuyt and C. M. Wayman, A study of oxide plate formation in tantalum—I. Growth characteristics and morphology. Acta Metallurgica16, 803–814 (1968). https://doi.org/10.1016/0001-6160(68)90099-0.

    Article  Google Scholar 

  27. V. B. Voitovich, V. A. Lavrenko, V. M. Adejev and E. I. Golovko, High-temperature oxidation of tantalum of different purity. Oxidation of Metals43, 509–526 (1995). https://doi.org/10.1007/BF01046896.

    Article  CAS  Google Scholar 

  28. J. Stringer, Void formation during the oxidation of tantalum. Journal of the Less Common Metals11, 111–118 (1966). https://doi.org/10.1016/0022-5088(66)90075-0.

    Article  CAS  Google Scholar 

  29. R. Chandrasekharan, I. Park, R. I. Masel and M. A. Shannon, Thermal oxidation of tantalum films at various oxidation states from 300 to 700 °C. Journal of Applied Physics98, 114908(1-10) (2005). https://doi.org/10.1063/1.2139834.

    Article  CAS  Google Scholar 

  30. D. Gerstenberg and C. J. Calbick, Effects of nitrogen, methane, and oxygen on structure and electrical properties of thin tantalum films. Journal of Applied Physics35, 402–407 (1964). https://doi.org/10.1063/1.1713324.

    Article  CAS  Google Scholar 

  31. C. A. Steidel and D. Gerstenberg, Thermal oxidation of sputtered tantalum thin films between 100 and 525 °C. Journal of Applied Physics40, 3828–3835 (1969). https://doi.org/10.1063/1.1658279.

    Article  CAS  Google Scholar 

  32. Y. Jin, J. Y. Song, S.-H. Jeong, J. W. Kim, T. G. Lee, J. H. Kim and J. Hahn, Thermal oxidation mechanism and stress evolution in ta thin films. Journal of Materials Research25, 1080–1086 (2010). https://doi.org/10.1557/JMR.2010.0157.

    Article  CAS  Google Scholar 

  33. S. Gnanarajan and S. K. H. Lam, Evolution of epitaxial Ta2O5 and Ta2O films during thermal oxidation of epitaxial tantalum films on sapphire substrates. Journal of Vacuum Science and Technology A26, 494–497 (2008). https://doi.org/10.1116/1.2909971.

    Article  CAS  Google Scholar 

  34. S. Sato, T. Inoue and H. Sasaki, Thermal oxidation of β-Ta below 500 °C. Thin Solid Films86, 21–30 (1981). https://doi.org/10.1016/0040-6090(81)90154-1.

    Article  CAS  Google Scholar 

  35. R. Knepper, B. Stevens and S. P. Baker, Effect of oxygen on the thermomechanical behavior of tantalum thin films during the β–α phase transformation. Journal of Applied Physics100, 123508(1–11) (2006). https://doi.org/10.1063/1.2388742.

    Article  CAS  Google Scholar 

  36. N. Terao, Structure des oxides de tantale. Japanese Journal of Applied Physics6, 21–34 (1967). https://doi.org/10.1143/JJAP.6.21.

    Article  CAS  Google Scholar 

  37. O. G. Cervantes, J. D. Kuntz, A. E. Gash and Z. A. Munir, Activation energy of tantalum–tungsten oxide thermite reactions. Combustion and Flame158, 117–122 (2011). https://doi.org/10.1016/j.combustflame.2010.07.023.

    Article  CAS  Google Scholar 

  38. Yu A Kotov, Electric explosion of wires as a method for preparation of nanopowders. The Journal of Nanoparticle Research5, 539–550 (2003). https://doi.org/10.1023/B:NANO.0000006069.45073.0b.

    Article  Google Scholar 

  39. Powder diffraction file, CD-Rom: PCPDFWIN, version 2.0, International Center for Diffraction Data, Newtown Square PA, USA, 1998.

  40. C. Suryanarayana and M. N. Grant, X-ray Diffraction: A Practical Approach, (Plenum Press, NY, 1998).

    Book  Google Scholar 

  41. D. Wolf, Grain boundaries in nanocrystalline materials. in Handbook of Materials Modeling, ed. S. Yip (Springer, Dordrecht, 2005), pp. 2055–2079.

    Chapter  Google Scholar 

  42. S. Vyazovkin, A. K. Burnham, J. M. Criado, L. A. Pérez-Maqueda, C. Popescu and N. Sbirrazzuoli, ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta520, 1–19 (2011). https://doi.org/10.1016/j.tca.2011.03.034.

    Article  CAS  Google Scholar 

  43. F. L. Cumbrera and F. Sánchez-Bajo, The use of the JMAYK kinetic equation for the analysis of solid-state reactions: critical considerations and recent interpretations. Thermochimica Acta266, 315–330 (1995). https://doi.org/10.1016/0040-6031(95)02554-5.

    Article  CAS  Google Scholar 

  44. G. Brauer, H. Müller and G. Kühner, Oxide der tieftemperaturoxydation von niob und tantal. Journal of the Less Common Metals4, 533–546 (1962). https://doi.org/10.1016/0022-5088(62)90042-5.

    Article  CAS  Google Scholar 

  45. J. Giber and H. Oechsner, Dissolution of anodic Ta2O5 layers into polycrystalline tantalum. Thin Solid Films131, 279–287 (1985). https://doi.org/10.1016/0040-6090(85)90148-8.

    Article  CAS  Google Scholar 

  46. F. Miao, J. P. Strachan, J. J. Yang, M.-X. Zhang, I. Goldfarb, A. C. Torrezan, P. Eschbach, R. D. Kelley, G. Medeiros-Ribeiro and R. S. Williams, Anatomy of a nanoscale conduction channel reveals the mechanism of a high-performance memristor. Advanced Materials23, 5633–5640 (2011). https://doi.org/10.1002/adma.201103379.

    Article  CAS  Google Scholar 

  47. M. K. Yang, H. Ju, G. H. Kim, J.-K. Lee and H.-C. Ryu, Direct evidence on ta-metal phases igniting resistive switching in TaOx thin film. Scientific Reports5, 14053(1–7) (2015). https://doi.org/10.1038/srep14053.

    Article  Google Scholar 

  48. A. Borgenstam and M. Hillert, Activation energy for isothermal martensite in ferrous alloys. Acta Materialia45, 651–662 (1997). https://doi.org/10.1016/S1359-6454(96)00186-3.

    Article  CAS  Google Scholar 

  49. I. Barin (ed.), Thermochemical Data of Pure Substances, vol. 2, (VCH, Weinheim, 1995), p. 1606.

    Google Scholar 

  50. A. V. Korshunov, A. P. Il’in, N. I. Radishevskaya and T. P. Morozova, The kinetics of oxidation of aluminum electroexplosive nanopowders during heating in air. Russian Journal of Physical Chemistry A84, 1576–1584 (2010). https://doi.org/10.1134/S0036024410090244.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by Tomsk Polytechnic University CEP grant Number DRIaP_75/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey V. Korshunov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 477 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korshunov, A.V., Pustovalov, A.V., Morozova, T.P. et al. Oxidation of Fine Tantalum Particles: Metastable Intermediates and Multistep Kinetics. Oxid Met 93, 301–328 (2020). https://doi.org/10.1007/s11085-020-09957-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-020-09957-8

Keywords

Navigation