Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Clinical Research

The effect of central obesity on inflammation, hepcidin, and iron metabolism in young women

Abstract

Background/objectives

In overweight and obesity (OW/OB), greater total body fat predicts higher serum hepcidin (SHep) which can impair iron homeostasis and increase risk for iron deficiency (ID). However, the effect of body fat distribution on SHep and iron homeostasis is unclear. In central obesity, interleukin (IL)-6 released from visceral adipose tissue into portal blood could strongly stimulate hepatic hepcidin synthesis. Thus, our hypothesis was that higher amounts of android fat, rather than gynoid fat, would predict impaired iron metabolism in OW/OB.

Subjects/methods

In this cross-sectional study, we enrolled 117 otherwise-healthy women into two groups: normal weight; BMI < 25 (n = 36) and OW/OB; BMI ≥ 25 (n = 81); we then subdivided the OW/OB using DEXA into tertiles based on the ratio of android fat/total body fat (AF/TBF). We measured inflammation and iron status, and assessed iron absorption in two ways: by measuring erythrocyte isotope incorporation from a labeled test meal containing 6 mg 57Fe (representing dietary iron); and by measuring change in serum iron (ΔSeFe) after a 100 mg oral iron challenge (representing supplemental iron).

Results

Greater AF/TBF correlated with higher CRP, AGP, SHep, and TIBC, and lower transferrin saturation and SeFe/SHep ratio (for all, p < 0.05). Greater AF/TBF correlated with lower supplemental iron absorption (ΔSeFe) (p = 0.08) but not lower dietary iron absorption. In multiple regressions, AF/TBF positively predicted CRP (p < 0.001) and SHep (p < 0.05); a model including AF/TBF and serum ferritin as covariates explained 65% of the variance in SHep. AF/TBF negatively predicted TSAT (p < 0.05) and iron absorption (ΔSeFe) (p = 0.07). In contrast, the ratio of gynoid fat/total body fat was not significantly associated with these variables.

Conclusion

Body fat distribution affects iron metabolism: women with greater central adiposity have higher SHep, greater impairments in iron homeostasis, and reduced iron absorption from a supplemental iron dose.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: In otherwise-healthy normal-weight women (n = 36) and overweight/obese women (n = 81), correlations between android fat/total fat ratio, inflammation and serum hepcidin.
Fig. 3: In otherwise-healthy normal-weight women (n = 36) and overweight/obese women (n = 81), correlations between android fat/total fat ratio and iron status parameters.
Fig. 4: In otherwise-healthy normal-weight women (n = 36) and overweight/obese women (n = 81), correlation between Δserum iron and serum hepcidin.

Similar content being viewed by others

References

  1. Cepeda-Lopez AC, Aeberli I, Zimmermann MB. Does obesity increase risk for iron deficiency? A review of the literature and the potential mechanisms. Int J Vitam Nutr Res. 2010;80:263–70.

    Article  CAS  PubMed  Google Scholar 

  2. Cepeda-Lopez AC, Allende-Labastida J, Melse-Boonstra A, Osendarp SJ, Herter-Aeberli I, Moretti D, et al. The effects of fat loss after bariatric surgery on inflammation, serum hepcidin, and iron absorption: a prospective 6-mo iron stable isotope study. Am J Clin Nutr. 2016;104:1030–8.

    Article  CAS  PubMed  Google Scholar 

  3. Yanoff LB, Menzie CM, Denkinger B, Sebring NG, McHugh T, Remaley AT, et al. Inflammation and iron deficiency in the hypoferremia of obesity. Int J Obes. 2007;31:1412–9.

    Article  CAS  Google Scholar 

  4. Baumgartner J, Smuts CM, Aeberli I, Malan L, Tjalsma H, Zimmermann MB. Overweight impairs efficacy of iron supplementation in iron-deficient South African children: a randomized controlled intervention. Int J Obes. 2013;37:24–30.

    Article  CAS  Google Scholar 

  5. Tussing-Humphreys LM, Nemeth E, Fantuzzi G, Freels S, Guzman G, Holterman AX, et al. Elevated systemic hepcidin and iron depletion in obese premenopausal females. Obesity. 2010;18:1449–56.

    Article  CAS  PubMed  Google Scholar 

  6. Tussing-Humphreys LM, Liang H, Nemeth E, Freels S, Braunschweig CA. Excess adiposity, inflammation, and iron-deficiency in female adolescents. J Am Diet Assoc. 2009;109:297–302.

    Article  CAS  PubMed  Google Scholar 

  7. Wrighting DM, Andrews NC. Interleukin-6 induces hepcidin expression through STAT3. Blood. 2006;108:3204–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sangkhae V, Nemeth E. Regulation of the iron homeostatic hormone hepcidin. Adv Nutr. 2017;8:126–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cepeda-Lopez AC, Melse-Boonstra A, Zimmermann MB, Herter-Aeberli I. In overweight and obese women, dietary iron absorption is reduced and the enhancement of iron absorption by ascorbic acid is one-half that in normal-weight women. Am J Clin Nutr. 2015;102:1389–97.

    Article  CAS  PubMed  Google Scholar 

  10. Aeberli I, Hurrell RF, Zimmermann MB. Overweight children have higher circulating hepcidin concentrations and lower iron status but have dietary iron intakes and bioavailability comparable with normal weight children. Int J Obes. 2009;33:1111–7.

    Article  CAS  Google Scholar 

  11. del Giudice EM, Santoro N, Amato A, Brienza C, Calabro P, Wiegerinck ET, et al. Hepcidin in obese children as a potential mediator of the association between obesity and iron deficiency. J Clin Endocr Metab. 2009;94:5102–7.

    Article  PubMed  CAS  Google Scholar 

  12. Tussing-Humphreys LM, Nemeth E, Fantuzzi G, Freels S, Holterman AXL, Galvani C, et al. Decreased serum hepcidin and improved functional iron status 6 months after restrictive bariatric surgery. Obesity. 2010;18:2010–6.

    Article  CAS  PubMed  Google Scholar 

  13. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259:87–91.

    Article  CAS  PubMed  Google Scholar 

  14. Fontana L, Eagon JC, Trujillo ME, Scherer PE, Klein S. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes. 2007;56:1010–3.

    Article  CAS  PubMed  Google Scholar 

  15. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Investig. 2006;116:1793–801.

    Article  CAS  PubMed  Google Scholar 

  16. Lim S, Meigs JB. Ectopic fat and cardiometabolic and vascular risk. Int J Cardiol. 2013;169:166–76.

    Article  PubMed  Google Scholar 

  17. Gartner A, El Ati J, Traissac P, Bour A, Berger J, Landais E, et al. A double burden of overall or central adiposity and anemia or iron deficiency is prevalent but with little socioeconomic patterning among Moroccan and Tunisian urban women. J Nutr. 2014;144:87–97.

    Article  CAS  PubMed  Google Scholar 

  18. Gibson RS. Principles of nutritional assessment. 2nd ed. New York: Oxford University Press; 2005.

  19. Andersson M, Theis W, Zimmermann MB, Foman JT, Jakel M, Duchateau GS, et al. Random serial sampling to evaluate efficacy of iron fortification: a randomized controlled trial of margarine fortification with ferric pyrophosphate or sodium iron edetate. Am J Clin Nutr. 2010;92:1094–104.

    Article  CAS  PubMed  Google Scholar 

  20. Erhardt JG, Estes JE, Pfeiffer CM, Biesalski HK, Craft NE. Combined measurement of ferritin, soluble transferrin receptor, retinol binding protein, and C-reactive protein by an inexpensive, sensitive, and simple sandwich enzyme-linked immunosorbent assay technique. J Nutr. 2004;134:3127–32.

    Article  CAS  PubMed  Google Scholar 

  21. Cook JD, Flowers CH, Skikne BS. The quantitative assessment of body iron. Blood. 2003;101:3359–64.

    Article  CAS  PubMed  Google Scholar 

  22. WHO/CDC. Assessing the iron status of populations including literature reviews: report of a Joint World Health Organization/Centers for Disease Control and Prevention Technical Consultation on the Assessment of Iron Status at the Population Level Geneva, WHO/CDC, 2004; https://www.who.int/nutrition/publications/micronutrients/anaemia_iron_deficiency/9789241596107/en/.

  23. WHO. Iron deficiency anemia, assessement, prevention and control: a guide for programme managers. Geneva: WHO; 2001.

  24. Walczyk T, Davidsson L, Zavaleta N, Hurrell RF. Stable isotope labels as a tool to determine the iron absorption by Peruvian school children from a breakfast meal. Fresen J Anal Chem. 1997;359:445–9.

    Article  CAS  Google Scholar 

  25. Cepeda-Lopez AC, Zimmermann MB, Wussler S, Melse-Boonstra A, Naef N, Mueller SM, et al. Greater blood volume and Hb mass in obese women quantified by the carbon monoxide-rebreathing method affects interpretation of iron biomarkers and iron requirements. Int J Obes. 2018;43:999–1008.

    Article  PubMed  CAS  Google Scholar 

  26. Thurnham DI, McCabe LD, Haldar S, Wieringa FT, Northrop-Clewes CA, McCabe GP. Adjusting plasma ferritin concentrations to remove the effects of subclinical inflammation in the assessment of iron deficiency: a meta-analysis. Am J Clin Nutr. 2010;92:546–55.

    Article  CAS  PubMed  Google Scholar 

  27. Cook JD, Dassenko SA, Lynch SR. Assessment of the role of nonheme-iron availability in iron balance. Am J Clin Nutr. 1991;54:717–22.

    Article  CAS  PubMed  Google Scholar 

  28. Wannamethee SG, Tchernova J, Whincup P, Lowe GD, Kelly A, Rumley A, et al. Plasma leptin: associations with metabolic, inflammatory and haemostatic risk factors for cardiovascular disease. Atherosclerosis. 2007;191:418–26.

    Article  CAS  PubMed  Google Scholar 

  29. Fried SK, Bunkin DA, Greenberg AS. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab. 1998;83:847–50.

    CAS  PubMed  Google Scholar 

  30. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, et al. The hormone resistin links obesity to diabetes. Nature. 2001;409:307–12.

    Article  CAS  PubMed  Google Scholar 

  31. Shimomura I, Funahashi T, Takahashi M, Maeda K, Kotani K, Nakamura T, et al. Enhanced expression of PAI-1 in visceral fat: possible contributor to vascular disease in obesity. Nat Med. 1996;2:800–3.

    Article  CAS  PubMed  Google Scholar 

  32. Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K, et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science. 2005;307:426–30.

    Article  CAS  PubMed  Google Scholar 

  33. Rocha VZ, Libby P. Obesity, inflammation, and atherosclerosis. Nat Rev Cardiol. 2009;6:399–409.

    Article  CAS  PubMed  Google Scholar 

  34. Vgontzas AN, Bixler EO, Papanicolaou DA, Chrousos GP. Chronic systemic inflammation in overweight and obese adults. JAMA. 2000;283:2235.

    CAS  PubMed  Google Scholar 

  35. Nemeth E, Ganz T. Anemia of inflammation. Hematol Oncol Clin North Am. 2014;28:671–81, vi.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Freireich EJ, Ross JF, Bayles TB, Emerson CP, Finch SC. Radioactive iron metabolism and erythrocyte survival studies of the mechanism of the anemia associated with rheumatoid arthritis. J Clin Investig. 1957;36:1043–58.

    Article  CAS  PubMed  Google Scholar 

  37. Libregts SF, Gutierrez L, de Bruin AM, Wensveen FM, Papadopoulos P, van Ijcken W, et al. Chronic IFN-gamma production in mice induces anemia by reducing erythrocyte life span and inhibiting erythropoiesis through an IRF-1/PU.1 axis. Blood. 2011;118:2578–88.

    Article  CAS  PubMed  Google Scholar 

  38. Johnson RA, Waddelow TA, Caro J, Oliff A, Roodman GD. Chronic exposure to tumor necrosis factor in vivo preferentially inhibits erythropoiesis in nude mice. Blood. 1989;74:130–8.

    Article  CAS  PubMed  Google Scholar 

  39. Stoffel NU, Lazrak M, Bellitir S, El Mir N, El Hamdouchi A, Barkat A, et al. The opposing effects of acute inflammation and iron deficiency anemia on serum hepcidin and iron absorption in young women. Haematologica. 2019;104:1143–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Nemeth E, Rivera S, Gabayan V, Keller C, Taudorf S, Pedersen BK, et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Investig. 2004;113:1271–6.

    Article  CAS  PubMed  Google Scholar 

  41. Michels K, Nemeth E, Ganz T, Mehrad B. Hepcidin and host defense against infectious diseases. Plos Pathog. 2015;11:e1004998.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Zimmermann MB, Troesch B, Biebinger R, Egli I, Zeder C, Hurrell RF. Plasma hepcidin is a modest predictor of dietary iron bioavailability in humans, whereas oral iron loading, measured by stable-isotope appearance curves, increases plasma hepcidin. Am J Clin Nutr. 2009;90:1280–7.

    Article  CAS  PubMed  Google Scholar 

  43. Cercamondi CI, Egli IM, Mitchikpe E, Tossou F, Zeder C, Hounhouigan JD, et al. Total iron absorption by young women from iron-biofortified pearl millet composite meals is double that from regular millet meals but less than that from post-harvest iron-fortified millet meals. J Nutr. 2013;143:1376–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Galy B, Ferring-Appel D, Becker C, Gretz N, Grone HJ, Schumann K, et al. Iron regulatory proteins control a mucosal block to intestinal iron absorption. Cell Rep. 2013;3:844–57.

    Article  CAS  PubMed  Google Scholar 

  45. Taylor M, Qu AJ, Anderson ER, Matsubara T, Martin A, Gonzalez FJ, et al. Hypoxia-inducible factor-2 alpha mediates the adaptive increase of intestinal ferroportin during iron deficiency in mice. Gastroenterology. 2011;140:2044–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hind K, Oldroyd B, Truscott JG. In vivo precision of the GE Lunar iDXA densitometer for the measurement of total body composition and fat distribution in adults. Eur J Clin Nutr. 2011;65:140–2.

    Article  CAS  PubMed  Google Scholar 

  47. Cepeda-Lopez AC, Osendarp SJ, Melse-Boonstra A, Aeberli I, Gonzalez-Salazar F, Feskens E, et al. Sharply higher rates of iron deficiency in obese Mexican women and children are predicted by obesity-related inflammation rather than by differences in dietary iron intake. Am J Clin Nutr. 2011;93:975–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Zimmermann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoffel, N.U., El-Mallah, C., Herter-Aeberli, I. et al. The effect of central obesity on inflammation, hepcidin, and iron metabolism in young women. Int J Obes 44, 1291–1300 (2020). https://doi.org/10.1038/s41366-020-0522-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-020-0522-x

This article is cited by

Search

Quick links