Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Harnessing the secreted extracellular matrix to engineer tissues

As an intermediary between cells and scaffolding biomaterials, the extracellular matrix secreted by the cells offers challenges and opportunities for the design and fabrication of engineered tissues.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biomaterials inspired by the extracellular matrix and cell-mediated material remodelling.
Fig. 2: Biomaterial-based strategies for harnessing the secreted ECM.
Fig. 3: Applications of the cell-secreted matrix.

References

  1. Sharma, B. et al. Sci. Transl. Med. 5, 167ra166 (2013).

    Article  CAS  Google Scholar 

  2. Occhetta, P. et al. Nat. Biomed. Eng. 3, 545–557 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Nguyen, E. H. et al. Nat. Biomed. Eng. 1, 0096 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ferreira, S. A. et al. Nat. Commun. 9, 4049 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Loebel, C., Mauck, R. L. & Burdick, J. A. Nat. Mater. 18, 883–891 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Blache, U. et al. EMBO Rep. 19, e45964 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Vining, K. H. & Mooney, D. J. Nat. Rev. Mol. Cell Biol. 18, 728–742 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Butcher, D. T., Alliston, T. & Weaver, V. M. Nat. Rev. Cancer 9, 108–122 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Evans, N. D. & Gentleman, E. J. Mater. Chem. B 2, 2345–2356 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Huleihel, L. et al. Sci. Adv. 2, e1600502 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Madl, C. M. et al. Nat. Mater. 16, 1233–1242 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chaudhuri, O. et al. Nat. Mater. 15, 326–334 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Huebsch, N. et al. Nat. Mater. 9, 518–526 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Khetan, S. et al. Nat. Mater. 12, 458–465 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ranga, A. et al. Proc. Natl Acad. Sci. USA 113, 6831–6839 (2016).

    Article  CAS  Google Scholar 

  16. Enemchukwu, N. O. et al. J. Cell. Biol. 212, 113–124 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gjorevski, N. et al. Nature 539, 560–564 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Cruz-Acuna, R. et al. Nat. Cell Biol. 19, 1326–1335 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bonnans, C., Chou, J. & Werb, Z. Nat. Rev. Mol. Cell Biol. 15, 786–801 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bissell, M. J., Hall, H. G. & Parry, G. J. Theor. Biol. 99, 31–68 (1982).

    Article  CAS  PubMed  Google Scholar 

  21. Morgner, J. et al. Nat. Commun. 6, 8198 (2015).

    Article  PubMed  Google Scholar 

  22. Roskelley, C. D. & Bissell, M. J. Biochem. Cell Biol. 73, 391–397 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Kloxin, A. M., Kasko, A. M., Salinas, C. N. & Anseth, K. S. Science 324, 59–63 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lutolf, M. P. et al. Proc. Natl Acad. Sci. USA 100, 5413–5418 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rosales, A. M. & Anseth, K. S. Nat. Rev. Mater. 1, 15012 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Scott, K. E., Rychel, K., Ranamukhaarachchi, S., Rangamani, P. & Fraley, S. I. Acta Biomater. 96, 81–98 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Hudalla, G. A., Eng, T. S. & Murphy, W. L. Biomacromolecules 9, 842–849 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Devaud, Y. R. et al. Adv. Healthc. Mater. 7, 1800534 (2018).

    Article  CAS  Google Scholar 

  29. Murad, S. et al. Proc. Natl Acad. Sci. USA 78, 2879–2882 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Spence, J. R. et al. Nature 470, 105–109 (2011).

    Article  PubMed  CAS  Google Scholar 

  31. Capeling, M. M. et al. Stem Cell Rep. 12, 381–394 (2019).

    Article  CAS  Google Scholar 

  32. Arora, N. et al. Development 144, 1128–1136 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Shadish, J. A., Benuska, G. M. & DeForest, C. A. Nat. Mater. 18, 1005–1014 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Metzger, S. et al. Macromol. Biosci. 16, 1703–1713 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Chen, X. D., Dusevich, V., Feng, J. Q., Manolagas, S. C. & Jilka, R. L. J. Bone Miner. Res. 22, 1943–1956 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Yamaguchi, Y., Mann, D. M. & Ruoslahti, E. Nature 346, 281–284 (1990).

    Article  CAS  PubMed  Google Scholar 

  37. Hezaveh, H. et al. Biomacromolecules 19, 721–730 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Lee, T. T. et al. Nat. Mater. 14, 352–360 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Stejskalova, A., Oliva, N., England, F. J. & Almquist, B. D. Adv. Mater. 31, 1806380 (2019).

    Article  CAS  Google Scholar 

  40. Fridy, P. C. et al. Nat. Methods 11, 1253–1260 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kamperman, T. et al. Adv. Healthc. Mater. 6, 1600913 (2017).

    Article  CAS  Google Scholar 

  42. Bryant, S. J. & Anseth, K. S. J. Biomed. Mater. Res. A 64, 70–79 (2003).

    Article  CAS  Google Scholar 

  43. Bryant, S. J. & Anseth, K. S. J. Biomed. Mater. Res. 59, 63–72 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Benoit, D. S., Schwartz, M. P., Durney, A. R. & Anseth, K. S. Nat. Mater. 7, 816–823 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dupont, S. et al. Nature 474, 179–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Mao, A. S. et al. Nat. Mater. 16, 236–243 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Rozario, T. & DeSimone, D. W. Dev. Biol. 341, 126–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Hautanen, A., Gailit, J., Mann, D. M. & Ruoslahti, E. J. Biol. Chem. 264, 1437–1442 (1989).

    Article  CAS  PubMed  Google Scholar 

  49. Quarta, M. et al. Nat. Biotechnol. 34, 752–759 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Baghdadi, M. B. et al. Nature 557, 714–718 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Millman, J. R. & Pagliuca, F. W. Diabetes 66, 1111–1120 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Mamidi, A. et al. Nature 564, 114–118 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Bochenek, M. A. et al. Nat. Biomed. Eng. 2, 810–821 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nat. Biomed. Eng. 2, 879–880 (2018).

  55. Shin, J. W. & Mooney, D. J. Proc. Natl Acad. Sci. USA 113, 12126–12131 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. McLeod, C. M. & Mauck, R. L. Sci. Rep. 6, 38852 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mayorca-Guiliani, A. E. et al. Nat. Med. 23, 890–898 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Costa-Silva, B. et al. Nat. Cell Biol. 17, 816–826 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Oskarsson, T. et al. Nat. Med. 17, 867–874 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Carpenter, R. A., Kwak, J. G., Peyton, S. R. & Lee, J. Nat. Biomed. Eng. 2, 915–929 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Parker, M. W. et al. J. Clin. Invest. 124, 1622–1635 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li, C. X. et al. Nat. Mater. 16, 379–389 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Horejs, C. M. et al. Nat. Commun. 8, 15509 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ferreira, S. A. et al. Biomaterials 176, 13–23 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

U.B. acknowledges postdoctoral-funding support from the Balgrist University Hospital Zurich. M.M.S and E.G. acknowledge support from the UK Regenerative Medicine Platform ‘Acellular / Smart Materials – 3D Architecture’ (grant no. MR/R015651/1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Molly M. Stevens or Eileen Gentleman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blache, U., Stevens, M.M. & Gentleman, E. Harnessing the secreted extracellular matrix to engineer tissues. Nat Biomed Eng 4, 357–363 (2020). https://doi.org/10.1038/s41551-019-0500-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-019-0500-6

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research