Skip to main content
Log in

Impact of Fumigation on Soil Microbial Communities under Potato Cultivation in Southern Alberta

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Fumigants are used to reduce disease pressure and there is some evidence of benefits through promotion of beneficial microorganisms. The current study examined the effect of fumigation and a soil freshener implement, as recommended by the fumigant manufacturer, on the microbial community in a potato field in Southern Alberta. Fumigation did not greatly reduce microbial species abundance or diversity, though there were changes to the community structure. Fumigation and use of the soil freshener increased tuber size profiles, but not marketable yield. Fumigation was effective at reducing wilt ratings, but there was no added benefit to using the soil freshener in the current study. This research highlights the need for management tools to decide whether fumigation and application method will increase profitability within a given production system.

Resumen

Los fumigantes se usan para reducir la presión de la enfermedad y hay alguna evidencia de los beneficios mediante la promoción de microorganismos benéficos. El presente estudio examinó el efecto de la fumigación y un implemento ambientador de suelo, como lo recomienda el fabricante del fumigante, sobre la comunidad microbiana en un campo de papa del sur de Alberta. La fumigación no redujo grandemente la abundancia de especies microbianas o su diversidad, aunque hubo cambios en la estructura de la comunidad. La fumigación y el uso del ambientador del suelo aumentaron los perfiles del tamaño de tubérculo, pero no el rendimiento comercial. La fumigación fue efectiva en la reducción de niveles de marchitez, pero no hubo beneficio adicional por el uso del ambientador del suelo en el presente estudio. En este estudio sobresale la necesidad de herramientas de manejo para decidir si la fumigación y el método de aplicación aumentarán las ganancias dentro de un sistema de producción determinado.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abrougui, K., S. Chehaibi, H. Boukhalfa, I. Chenini, B. Douh, and M. Nemri. 2014. Soil bulk density and potato tuber yield as influenced by tillage systems and working depths. Greener Journal of Agricultural Sciences 4: 46–51.

    Google Scholar 

  • Apprill, A., S. McNally, R. Parsons, and L. Weber. 2015. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquatic Microbial Ecology 75: 129–137.

    Google Scholar 

  • Bittara, F.G., G.A. Secor, and N.C. Gudmestad. 2017. Chloropicrin soil fumigation reduces Spongospora subterranea soil inoculum levels but does not control powdery scab disease on roots and tubers of potato. American Journal of Potato Research 94: 129–147.

    CAS  Google Scholar 

  • Carter, M.R., and J.B. Sanderson. 2001. Influence of conservation tillage and rotation length on potato productivity, tuber disease and soil quality parameters on a fine sandy loam in eastern Canada. Soil and Tillage Research 63: 1–13.

    Google Scholar 

  • Carter, M.R., H.T. Kunelius, J.B. Sanderson, J. Kimpinski, H.W. Platt, and M.A. Bolinder. 2003. Productivity parameters and soil health dynamics under long-term 2-year potato rotations in Atlantic Canada. Soil and Tillage Research 72: 153–168.

    Google Scholar 

  • Collins, H.P., A. Alva, R.A. Boydston, R.L. Cochran, P.B. Hamm, A. McGuire, and E.J.B. Riga. 2006. Soil microbial, fungal, and nematode responses to soil fumigation and cover crops under potato production. Biology and Fertility of Soils 42: 247–257.

    CAS  Google Scholar 

  • Davis, J.R. 1985. Approaches to control of potato early dying caused byVerticillium dahliae. American Potato Journal 62: 177–185.

    Google Scholar 

  • Davis, J., O. Huisman, D. Everson, and A. Schneider. 2001. Verticillium wilt of potato: a model of key factors related to disease severity and tuber yield in southeastern Idaho. American Journal of Potato Research 78: 291.

    Google Scholar 

  • Dhariwal, A., J. Chong, S. Habib, I.L. King, L.B. Agellon, and J. Xia. 2017. MicrobiomeAnalyst: A web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Research 45: W180–W188.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Easton, G., M. Nagle, and D. Bailey. 1974. Fumigants, rates, and application methods affecting Verticillium wilt incidence and potato yields. American Potato Journal 51: 71–77.

    CAS  Google Scholar 

  • Emerson, J.B., P.B. Keady, T.E. Brewer, N. Clements, E.E. Morgan, J. Awerbuch, S.L. Miller, and N. Fierer. 2015. Impacts of flood damage on airborne bacteria and fungi in homes after the 2013 Colorado Front Range flood. Environ Sci Technol 49: 2675–2684.

    CAS  PubMed  Google Scholar 

  • Fierer, N., J.A. Jackson, R. Vilgalys, and R.B. Jackson. 2005. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Applied and Environmental Microbiology 71: 4117–4120.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gan, J., S.R. Yates, F.F. Ernst, and W.A. Jury. 2000. Degradation and volatilization of the fumigant chloropicrin after soil treatment. Journal of Environmental Quality 29: 1391–1397.

    CAS  Google Scholar 

  • Gilreath, J., and B. Santos. 2004. Methyl bromide alternatives for weed and soilborne disease management in tomato (Lycopersicon esculentum). Crop Protection 23: 1193–1198.

    CAS  Google Scholar 

  • Hoshino, Y.T., and N. Matsumoto. 2007. Changes in fungal community structure in bulk soil and spinach rhizosphere soil after chemical fumigation as revealed by 18S rDNA PCR-DGGE. Soil Science and Plant Nutrition 53: 40–55.

    CAS  Google Scholar 

  • Hutchinson, C.M. 2005 Evaluation of chloropicrin soil fumigation programs for potato (Solanum tuberosum L.) production proceedings of the 118th annual meeting of the Florida state horticultural society. pp. 129–131.

  • Ibekwe, A.M., S.K. Papiernik, and C.-H. Yang. 2004. Enrichment and molecular characterization of chloropicrin- and metam-sodium-degrading microbial communities. Applied Microbiology and Biotechnology 66: 325–332.

    CAS  PubMed  Google Scholar 

  • Iritani, W., L. Weiler, and N. Knowles. 1983. Relationships between stem number, tuber set and yield of russet Burbank potatoes. American Potato Journal 60: 423–431.

    Google Scholar 

  • Kandula, K., E. Jones, A. Stewart, and I. Horner. 2006. Colonisation of apple roots by arbuscular mycorrhiza in specific apple replant disease affected soil. New Zealand Plant Protection 59: 92–96.

    Google Scholar 

  • Kelling, K.A., W.R. Stevenson, P.E. Speth, and R.V. James. 2016. Interactive effects of fumigation and fungicides on potato response to nitrogen rate or timing. American Journal of Potato Research 93: 533–542.

    CAS  Google Scholar 

  • Knowles, N., and L.O. Knowles. 2006. Manipulating stem number, tuber set, and yield relationships for northern and southern-grown potato seed lots. Crop Science 46: 284–296.

    Google Scholar 

  • Kunkel, R., and M. Weller. 1965. Fumigation of potato soils in Washington. American Potato Journal 42: 57–69.

    CAS  Google Scholar 

  • Li, J., B. Huang, Q. Wang, Y. Li, W. Fang, D. Yan, M. Guo, and A. Cao. 2017. Effect of fumigation with chloropicrin on soil bacterial communities and genes encoding key enzymes involved in nitrogen cycling. Environmental Pollution 227: 534–542.

    CAS  PubMed  Google Scholar 

  • Liu, X., X. Cheng, H. Wang, K. Wang, and K. Qiao. 2015. Effect of fumigation with 1,3-dichloropropene on soil bacterial communities. Chemosphere 139: 379–385.

    CAS  PubMed  Google Scholar 

  • MacGuidwin, A.E., and D.I. Rouse. 1990. Role of Pratylenchus penetrans in potato early dying disease of russet Burbank potato. Phytopathology 80: 1077–1082.

    Google Scholar 

  • McGuire, K.L., S.G. Payne, M.I. Palmer, C.M. Gillikin, D. Keefe, S.J. Kim, S.M. Gedallovich, J. Discenza, R. Rangamannar, and J.A. Koshner. 2013. Digging the New York City skyline: Soil fungal communities in green roofs and city parks. PLoS One 8: e58020.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nyiraneza, J., R.D. Peters, V.A. Rodd, M.G. Grimmett, and Y. Jiang. 2015. Improving productivity of managed potato cropping Systems in Eastern Canada: Crop rotation and nitrogen source effects. Agronomy Journal 107: 1447–1457.

    Google Scholar 

  • Pageni, B.B., N.Z. Lupwayi, Z. Akter, F.J. Larney, L.M. Kawchuk, and Y. Gan. 2014. Plant growth-promoting and phytopathogen-antagonistic properties of bacterial endophytes from potato (Solanum tuberosum L.) cropping systems. Canadian Journal of Plant Science 94: 835–844.

    Google Scholar 

  • Parada, A.E., D.M. Needham, and J.A. Fuhrman. 2016. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environmental Microbiology 18: 1403–1414.

    CAS  PubMed  Google Scholar 

  • Pecina, J., A. Minuto, C. Bruzzone, and M. Romić. 2014. Effects of chloropicrin soil fumigation on pathogenic and beneficial soil microbial populations in tomato production in EUVI Balkan symposium on vegetables and potatoes 1142. pp. 141–146.

  • Peters, R.D., A.V. Sturz, M.R. Carter, and J.B. Sanderson. 2003. Developing disease-suppressive soils through crop rotation and tillage management practices. Soil and Tillage Research 72: 181–192.

    Google Scholar 

  • Peters, R.D., A.V. Sturz, M.R. Carter, and J.B. Sanderson. 2004. Influence of crop rotation and conservation tillage practices on the severity of soil-borne potato diseases in temperate humid agriculture. Canadian Journal of Soil Science 84: 397–402.

    Google Scholar 

  • Pierce, F.J., and C.G. Burpee. 1995. Zone tillage effects on soil properties and yield and quality of potatoes (Solanum tuberosum L.). Soil and Tillage Research 35: 135–146.

    Google Scholar 

  • Powelson, R., and G. Carter. 1973. Efficacy of soil fumigants for control of Verticillium wilt of potatoes. American Journal of Potato Research 50: 162–167.

    Google Scholar 

  • Powelson, M.L., and R.C. Rowe. 1993. Biology and management of early dying of potatoes. Annual Review of Phytopathology 31: 111–126.

    CAS  PubMed  Google Scholar 

  • Rivers, A.R., K.C. Weber, T.G. Gardner, S. Liu, and S.D. Armstrong. 2018. ITSxpress: Software to rapidly trim internally transcribed spacer sequences with quality scores for marker gene analysis. F1000Research 7: 1418.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sommermann, L., J. Geistlinger, D. Wibberg, A. Deubel, J. Zwanzig, D. Babin, A. Schlüter, and I. Schellenberg. 2018. Fungal community profiles in agricultural soils of a long-term field trial under different tillage, fertilization and crop rotation conditions analyzed by high-throughput ITS-amplicon sequencing. PLoS One 13: e0195345.

    PubMed  PubMed Central  Google Scholar 

  • Stalham, M.A., E.J. Allen, A.B. Rosenfeld, and F.X. Herry. 2007. Effects of soil compaction in potato (Solanum tuberosum) crops. The Journal of Agricultural Science 145: 295–312.

    Google Scholar 

  • Stark, J.C., and G.A. Porter. 2005. Potato nutrient management in sustainable cropping systems. American Journal of Potato Research 82: 329–338.

    Google Scholar 

  • Tsror, L., O. Erlich, M. Hazanovsky, and S. Lebiush. 2019. Control of potato powdery scab (Spongospora subterranea) in Israel with chloropicrin, metam sodium or fluazinam. Crop Protection 124: 104836.

    CAS  Google Scholar 

  • Wang, Z., Q. Chen, L. Liu, X. Wen, and Y. Liao. 2016. Responses of soil fungi to 5-year conservation tillage treatments in the drylands of northern China. Applied Soil Ecology 101: 132–140.

    Google Scholar 

  • Yamamoto, T., V.U. Ultra, S. Tanaka, K. Sakurai, and K. Iwasaki. 2008. Effects of methyl bromide fumigation, chloropicrin fumigation and steam sterilization on soil nitrogen dynamics and microbial properties in a pot culture experiment. Soil Science and Plant Nutrition 54: 886–894.

    CAS  Google Scholar 

  • Zeng, Y., Z. Abdo, A. Charkowski, J.E. Stewart, and K. Frost. 2019. Responses of bacterial and fungal community structure to different rates of 1,3-Dichloropropene fumigation. Phytobiomes Journal 3: 212–223.

    Google Scholar 

  • Zheng, W., S.K. Papiernik, M. Guo, and S.R. Yates. 2003. Competitive degradation between the fumigants chloropicrin and 1,3-Dichloropropene in Unamended and amended soils. Journal of Environmental Quality 32: 1735–1742.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Potato Early Dying Complex project funded by the University of Lethbridge Research Operating Fund (DY), in collaboration with the Potato Growers of Alberta, McCain Foods Limited, Cavendish Farms and Lamb Weston Holdings Inc. The authors also acknowledge CP Farms on whose land the work was carried out and for providing labor and equipment contributions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jonathan A. D. Neilson or Dmytro P. Yevtushenko.

Electronic supplementary material

Fig. S1

Rarefaction curves for bacteria, fungi and non-fungal/non-plant eukaryotes (PNG 410 kb)

Table. S1

(DOCX 15.5 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neilson, J.A.D., Robertson, C.J., Snowdon, E.W. et al. Impact of Fumigation on Soil Microbial Communities under Potato Cultivation in Southern Alberta. Am. J. Potato Res. 97, 115–126 (2020). https://doi.org/10.1007/s12230-019-09761-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-019-09761-4

Keywords

Navigation