Skip to main content
Log in

Manufacture of Tungsten Heavy Alloy Tube by Diffusion Bonding of Semicircular Tubes

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

An innovative manufacturing method to fabricate tubular parts made of tungsten heavy alloy (THA) by diffusion bonding of sintered semicircular tubes is proposed and characterized in this study. THAs are produced by blending tungsten grains with a lower-melting-point Ni-Fe binder metal. During the liquid phase sintering (LPS) process of THA, the Ni-Fe liquid wets the tungsten and provides a soluble diffusion network for rapid sintering. Multi-phase THAs are usually very difficult to produce as a tubular piece. During the LPS of the powder compact, a gravity-induced slumping leads to some distortion in the bottom of the tubular parts. One possible alternative to handle this problem is to combine the segmented THA pieces by solid-state diffusion bonding to build up tubular piece. Thus, this study proposes combining the semicircular THA tubes using the diffusion bonding technique to manufacture the tubular THA parts. To provide uniform contact pressures along the joining surfaces, horizontal diffusion bonding is performed using a specially constructed supporting apparatus to reduce the gravity effect. An industry-applicable tube manufacturing process has been well characterized, and its feasibility has been demonstrated by bond quality that was assessed by optical metallography and mechanical testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. R.M. German, P. Suri, and S.J. Park, Review: Liquid Phase Sintering, J. Mater. Sci., 2009, 44(1), p 1–39

    Article  CAS  Google Scholar 

  2. J. Liu and R.M. German, Microstructural Parameters Related to Liquid-Phase Sintering, Metall. Mater. Trans. A, 2000, 31(10), p 2607–2614

    Article  Google Scholar 

  3. J. Liu and R.M. German, Grain Boundary Sliding and Component Shape Distortion during Liquid-Phase Sintering, Metall. Mater. Trans. A, 2001, 32(8), p 2087–2095

    Article  Google Scholar 

  4. J. Shen, L. Campbell, P. Suri, and R.M. German, Quantitative Microstructure Analysis of Tungsten Heavy Alloys (W-Ni-Cu) during Initial Stage Liquid Phase Sintering, Int. J. Refract. Met. Hard Mater., 2005, 23(2), p 99–108

    Article  CAS  Google Scholar 

  5. Y. Yu, M. Zu, C. Ren, and W. Zhang, Effect of Strain Rate on the Plastic Deformation and Fracture of 90W-7Ni-3Fe Alloy Prepared by Liquid-Phase Sintering, J. Mater. Eng. Perform., 2018, 27, p 6606–6615

    Article  CAS  Google Scholar 

  6. O. Dinçer, M.K. Pehlivanoğlu, N.K. Çalişkan, İ. Karakaya, and A. Kalkanli, Processing and Microstructural Characterization of Liquid Phase Sintered Tungsten–Nickel–Cobalt Heavy Alloys, Int. J. Refract. Met. Hard Mater., 2015, 50, p 106–112

    Article  Google Scholar 

  7. R.M. German, A. Griffo, and Y. Liu, Gravitational Effects on Grain Coarsening during Liquid-Phase Sintering, Metall. Mater. Trans. A, 1997, 28(1), p 215–221

    Article  Google Scholar 

  8. P. Lu, X. Xu, W. Yi, and R.M. German, Porosity Effect on Densification and Shape Distortion in Liquid Phase Sintering, Mater. Sci. Eng. A, 2001, 318(1–2), p 111–121

    Article  Google Scholar 

  9. H.F. Wang, J.T. Han, and Q.L. Hao, Influence of Mandrel on the Performance of Titanium Tube with Cold Rotary Swaging, Mater. Manuf. Process., 2015, 30(10), p 1251–1255

    Article  CAS  Google Scholar 

  10. H. Al-Khazraji, E. El-Danaf, M. Wollmann, and L. Wagner, Microstructure, Mechanical, and Fatigue Strength of Ti-54M Processed by Rotary Swaging, J. Mater. Eng. Perform., 2015, 24, p 2074–2084

    Article  CAS  Google Scholar 

  11. E. Simonetto, A. Ghiotti, and S. Bruschi, Dynamic Detection of Tubes Wrinkling in Three Roll Push Bending, Procedia Eng., 2017, 207, p 2316–2321

    Article  Google Scholar 

  12. T.D. Kil, J.M. Lee, and Y.H. Moon, Quantitative Formability Estimation of Ring Rolling Process by Using Deformation Processing Map, J. Mater. Process. Technol., 2015, 220, p 224–230

    Article  CAS  Google Scholar 

  13. W. Chen, J. Jiang, D. Li, T. Zou, and Y. Peng, Flower Pattern and Roll Positioning Design for the Cage Roll Forming Process of ERW Pipes, J. Mater. Process. Technol., 2019, 264, p 295–312

    Article  Google Scholar 

  14. S.Y. Kim, B.D. Joo, S. Shin, C.J. Van Tyne, and Y.H. Moon, Discrete Layer Hydroforming of Three-Layered Tubes, Int. J. Mach. Tools Manuf., 2013, 68, p 56–62

    Article  Google Scholar 

  15. H.K. Yi, E.J. Pavlina, C.J. Van Tyne, and Y.H. Moon, Application of a Combined Heating System for the Warm Hydroforming of Lightweight Alloy Tubes, J. Mater. Process. Technol., 2008, 203(1–3), p 532–536

    Article  CAS  Google Scholar 

  16. S.W. Han, Y.Y. Woo, T.W. Hwang, I.Y. Oh, and Y.H. Moon, Tailor Layered Tube Hydroforming for Fabricating Tubular Parts with Dissimilar Thickness, Int. J. Mach. Tools Manuf., 2019, 138, p 51–65

    Article  Google Scholar 

  17. J.Y. Park, S.W. Han, H.S. Jeong, J.R. Cho, and Y.H. Moon, Advanced Sealing System to Prevent Leakage in Hydroforming, J. Mater. Process. Technol., 2017, 247, p 103–110

    Article  Google Scholar 

  18. H.K. Nirala and A. Agrawal, A Novel Electromagnetic Fixture for Incremental Sheet Metal Forming, J. Manuf. Sci. Eng., 2019, 141(3), p 1–10

    Article  Google Scholar 

  19. H. Park, D. Kim, J. Lee, S.J. Kim, Y. Lee, and Y.H. Moon, Effect of an Aluminum Driver Sheet on the Electromagnetic Forming of DP780 Steel Sheet, J. Mater. Process. Technol., 2016, 235, p 158–170

    Article  CAS  Google Scholar 

  20. P. Ashwath and M.A. Xavior, Effect of Ceramic Reinforcements on Microwave Sintered Metal Matrix Composites, Mater. Manuf. Process., 2018, 33(1), p 7–12

    Article  CAS  Google Scholar 

  21. M. Hasan, J. Zhao, Z. Huang, H. Wu, F. Jia, and Z. Jiang, Effects of Holding Time on the Sintering of Cemented Tungsten Carbide Powder and Bonding with High-Strength Steel Wire, J. Mater. Eng. Perform., 2019, https://doi.org/10.1007/s11665-019-04153-5

    Article  Google Scholar 

  22. A.H. Assari and B. Eghbali, Solid State Diffusion Bonding Characteristics at the Interfaces of Ti and Al Layers, J. Alloys Compd., 2019, 773, p 50–58

    Article  CAS  Google Scholar 

  23. B. Wang, F. Zhang, S.L. Chen, and S. Kou, Computational Simulation of Diffusion Process in Multicomponent and Multiphase Systems in Diffusion Bonding, Sci. Technol. Weld. Join., 2013, 18(6), p 451–457

    Article  CAS  Google Scholar 

  24. B.D. Joo, J.H. Jang, J.H. Lee, Y.M. Son, and Y.H. Moon, Selective Laser Melting of Fe-Ni-Cr Layer on AISI, H13 Tool Steel, Trans. Nonferrous Met. Soc. China, 2009, 19(4), p 921–924

    Article  CAS  Google Scholar 

  25. J.H. Jang, B.D. Joo, C.J. VanTyne, and Y.H. Moon, Characterization of Deposited Layer Fabricated by Direct Laser Melting Process, Met. Mater. Int., 2013, 19, p 497–506

    Article  CAS  Google Scholar 

  26. N. Senthilnathan, A.R. Annamalai, and G. Venkatachalam, Sintering of Tungsten and Tungsten Heavy Alloys of W-Ni-Fe and W-Ni-Cu: A Review, Trans. Indian Inst. Met., 2017, 70(5), p 1161–1176

    Article  CAS  Google Scholar 

  27. R. Bollina and R.M. German, Heating Rate Effects on Microstructural Properties of Liquid Phase Sintered Tungsten Heavy Alloys, Int. J. Refract. Met. Hard Mater., 2004, 22(2–3), p 117–127

    Article  CAS  Google Scholar 

  28. B. Cheng, B. Lane, J. Whiting, and K. Chou, A Combined Experimental-Numerical Method to Evaluate Powder Thermal Properties in Laser Powder Bed Fusion, J. Manuf. Sci. Eng., 2018, 140(11), p 111008

    Article  Google Scholar 

  29. S. Stan, M. Chisamera, I. Riposan, L. Neacsu, A.M. Cojocaru, and I. Stan, Integrated System of Thermal/Dimensional Analysis for Quality Control of Metallic Melt and Ductile Iron Casting Solidification, J. Mater. Eng. Perform., 2018, 27, p 5187–5196

    Article  CAS  Google Scholar 

  30. A. Bose and R.M. German, Sintering Atmosphere Effects on Tensile Properties of Heavy Alloys, Metall. Trans. A, 1988, 19(10), p 2467–2476

    Article  Google Scholar 

  31. T.W. Hwang, Y.Y. Woo, S.W. Han, and Y.H. Moon, Functionally Graded Properties in Directed-Energy-Deposition Titanium Parts, Opt. Laser Technol., 2018, 105, p 80–88

    Article  CAS  Google Scholar 

  32. D.K. Kim, Y.Y. Woo, K.S. Park, W.J. Sim, and Y.H. Moon, Advanced Induction Heating System for Hot Stamping, Int. J. Adv. Manuf. Technol., 2018, 99(1–4), p 583–593

    Article  Google Scholar 

  33. H.K. Jung, C.G. Kang, and Y.H. Moon, Induction Heating of Semisolid Billet and Control of Globular Microstructure to Prevent Coarsening Phenomena, J. Mater. Eng. Perform., 2000, 9, p 12–23

    Article  CAS  Google Scholar 

  34. M.C. Song and Y.H. Moon, Coupled Electromagnetic and Thermal Analysis of Induction Heating for the Forging of Marine Crankshafts, Appl. Therm. Eng., 2016, 98, p 98–109

    Article  Google Scholar 

  35. M. Li, D. Ruprecht, G. Kracker, T. Höschen, and R. Neu, Impact of Heat Treatment on Tensile Properties of 97W2Ni1Fe Heavy Alloy, J. Nucl. Mater., 2018, 512, p 1–7

    Article  CAS  Google Scholar 

  36. I.S. Humail, F. Akhtar, S.J. Askari, M. Tufail, and X. Qu, Tensile Behavior Change Depending on the Varying Tungsten Content of W-Ni-Fe Alloys, Int. J. Refract. Met. Hard Mater., 2007, 25(5–6), p 380–385

    Article  CAS  Google Scholar 

  37. J. Das, G.A. Rao, and S.K. Pabi, Microstructure and Mechanical Properties of Tungsten Heavy Alloys, Mater. Sci. Eng. A, 2010, 527, p 7841–7847

    Article  Google Scholar 

  38. Z.S. Park, S. Lee, T. Lee, J.H. Kim, and Y.H. Moon, Fabrication of long tubular parts made of tungsten-heavy alloys by inductive bonding of multiple tubes, Int. J. Refract. Met. Hard Mater., 2019, 85, p 105058

    Article  Google Scholar 

Download references

Acknowledgment

This work was partially supported by a National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (No. 2012R1A5A1048294).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Hoon Moon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, Z.S., Han, S.W., Kim, J.H. et al. Manufacture of Tungsten Heavy Alloy Tube by Diffusion Bonding of Semicircular Tubes. J. of Materi Eng and Perform 29, 699–711 (2020). https://doi.org/10.1007/s11665-020-04587-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04587-2

Keywords

Navigation