Skip to main content
Log in

Effect of Initial Orientation on Corrosion Behavior of AZ80 Magnesium Alloy in Simulated Body Fluid

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Three different orientation specimens (P-ND30, P-ND60 and P-TD) prepared from the rolled AZ80 magnesium alloy plates were immersed in simulated body fluid (SBF) for 384 h. Electrochemical impedance spectroscopy (EIS) tests were measured at 24 h, 96 h, 192 h, 288 h, and 384 h during immersion. The corrosion morphology and chemical composition of the three orientation specimens were investigated using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). X-ray diffractometer (XRD) was used to evaluate the phase composition of the surface of the specimen at different immersion stages. The results indicated that the P-ND30 and P-ND60 specimens had similar corrosion behavior. The P-TD specimen showed the best corrosion resistance. A degradation evolution model was established, and the effect of initial orientation on corrosion behavior was discussed.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H.S. Brar, M.O. Platt, M. Sarntinoranont, P.I. Martin, M.V. Manuel, Magnesium as a biodegradable and bioabsorbable material for medical implants. Met. Mater. Soc. 61, 31–34 (2009)

    Article  CAS  Google Scholar 

  2. M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials. A review. Biomaterials 27, 1728–1734 (2006)

    Article  CAS  Google Scholar 

  3. Y.B. Ren, H. Wang, J.J. Huang, B.C. Zhang, K. Yang, Study of biodegradation of pure magnesium. Key Eng. Mater. 342–343, 601–604 (2007)

    Article  Google Scholar 

  4. E.D. McBRIDE, Absorbable metal in bone surgery: a further report on the use of magnesium alloys. J. Am. Med. Assoc. 111, 2464–2467 (1938)

    Article  CAS  Google Scholar 

  5. Q. Li, W.B. Ye, H. Gao, L.L. Gao, Improving the corrosion resistance of ZEK100 magnesium alloy by combining high-pressure torsion technology with hydroxyapatite coating. Mater. Des. 181, 107933 (2019)

    Article  CAS  Google Scholar 

  6. Y. Zhang, H. Cao, H. Huang, Z. Wang, Hydrophobic modification of magnesium hydroxide coating deposited cathodically on magnesium alloy and its corrosion protection. Coatings 9, 477 (2019)

    Article  CAS  Google Scholar 

  7. W.Q. Xu, N. Birbilis, G. Sha, Y. Wang, J.E. Daniels, Y. Xiao, M. Ferry, A high-specific-strength and corrosion-resistant magnesium alloy. Nat. Mater. 14, 1229 (2015)

    Article  CAS  Google Scholar 

  8. N. Birbilis, K.D. Ralston, S. Virtanen, H.L. Fraser, C.H.J. Davies, Grain character influences on corrosion of ECAPed pure magnesium. Corros. Eng. Sci. Technol. 45, 224–230 (2010)

    Article  CAS  Google Scholar 

  9. K.D. Ralston, N. Birbilis, C.H.J. Davies, Revealing the relationship between grain size and corrosion rate of metals. Scripta Mater. 63, 1201–1204 (2010)

    Article  CAS  Google Scholar 

  10. Y. Lu, A.R. Bradshaw, Y.L. Chiu, I.P. Jones, Effects of secondary phase and grain size on the corrosion of biodegradable Mg–Zn–Ca alloys. Mater. Sci. Eng. C 48, 480–486 (2015)

    Article  CAS  Google Scholar 

  11. L.T. Chye, M.Z.M. Zamzuri, S. Norbahiyah, K.A. Ismail, M.N.B. Derman, S. Illias, Effect of heat treatment on microstructure and corrosion behavior of Az91d magnesium alloy. Adv. Mater. Res. 685, 102–106 (2013)

    Article  Google Scholar 

  12. G.L. Song, Z.Q. Xu, Crystal orientation and electrochemical corrosion of polycrystalline Mg. Corros. Sci. 63, 100–112 (2012)

    Article  CAS  Google Scholar 

  13. G.L. Song, R. Mishra, Z.Q. Xu, Crystallographic orientation and electrochemical activity of AZ31 Mg alloy. Electrochem. Commun. 12, 1009–1012 (2010)

    Article  CAS  Google Scholar 

  14. G.L. Song, Z.Q. Xu, Effect of microstructure evolution on corrosion of different crystal surfaces of AZ31 Mg alloy in a chloride containing solution. Corros. Sci. 54, 97–105 (2012)

    Article  CAS  Google Scholar 

  15. H.M. Jia, X.H. Feng, Y.S. Yang, Effect of crystal orientation on corrosion behavior of directionally solidified Mg-4 wt% Zn alloy. J. Mater. Sci. Technol. 34, 1229–1235 (2018)

    Article  Google Scholar 

  16. R.L. Xin, Y.M. Luo, A.L. Zuo, J.C. Gao, Q. Liu, Texture effect on corrosion behavior of AZ31 Mg alloy in simulated physiological environment. Mater. Lett. 72, 1–4 (2012)

    Article  CAS  Google Scholar 

  17. Y. Xiong, Y.Y. Jiang, Cyclic deformation and fatigue of rolled AZ80 magnesium alloy along different material orientations. Mater. Sci. Eng. A 677, 58–67 (2016)

    Article  CAS  Google Scholar 

  18. ISO10993.15, Biological Evaluation of Medical Device–Part 15: Identification and Q-uantification of Degradation Products from Metals and Alloys, The People’s Republic of China State Administration of Quality Supervision Inspection and Quarantine, 2000

  19. G. Song, A. Atrens, D. St John, X. Wu, J. Nairn, The anodic dissolution of magnesium in chloride and sulphate solutions. Corros. Sci. 39, 1981–2004 (1997)

    Article  CAS  Google Scholar 

  20. Y. Xiong, Q. Hu, X.X. Hu, R.G. Song, Microstructure and corrosion resistance of Ti3O5-HA bioceramic coating fabricated on AZ80 magnesium alloy. Surf. Coat. Technol. 325, 239–247 (2017)

    Article  CAS  Google Scholar 

  21. Y.W. Song, D.Y. Shan, R.S. Chen, F. Zhang, E.H. Han, Biodegradable behaviors of AZ31 magnesium alloy in simulated body fluid. Mater. Sci. Eng. C 29, 1039–1045 (2009)

    Article  CAS  Google Scholar 

  22. Y. Wang, M. Wei, J.C. Gao, J.Z. Hu, Y. Zhang, Corrosion process of pure magnesium in simulated body fluid. Mater. Lett. 62, 2181–2184 (2008)

    Article  Google Scholar 

  23. G.L. Song, K.A. Unocic, The anodic surface film and hydrogen evolution on Mg. Corros. Sci. 98, 758–765 (2015)

    Article  CAS  Google Scholar 

  24. M. Ascencio, M. Pekguleryuz, S. Omanovic, An investigation of the corrosion mechanisms of WE43 Mg alloy in a modified simulated body fluid solution: the effect of electrolyte renewal. Corros. Sci. 91, 297–310 (2015)

    Article  CAS  Google Scholar 

  25. A. Seyfoori, Sh Mirdamadi, A. Khavandi, Z. Seyed Rauf, Biodegradation behavior of micro-arc oxidized AZ31 magnesium alloys formed in two different electrolytes. Appl. Surf. Sci. 261, 92–100 (2012)

    Article  CAS  Google Scholar 

  26. Y. Xin, K. Huo, H. Tao, G. Tang, P.K. Chu, Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. Acta Biomater. 4, 2008–2015 (2008)

    Article  CAS  Google Scholar 

  27. U. Konig, B. Davepon, Microstructure of polycrystalline Ti and its microelectrochemical properties by means of electron-backscattering diffraction (EBSD). Electrochim. Acta 47, 149–160 (2001)

    Article  CAS  Google Scholar 

  28. M. Liu, D. Qiu, M.C. Zhao, G.L. Song, A. Atrensa, The effect of crystallographic orientation on the active corrosion of pure magnesium. Scripta Mater. 58, 421–424 (2008)

    Article  CAS  Google Scholar 

  29. B.Q. Fu, W. Liu, Z.L. Li, Calculation of the surface energy of bcc-metals with the empirical electron theory. Appl. Surf. Sci. 255, 8511–8519 (2009)

    Article  CAS  Google Scholar 

  30. L.C. Zhao, C.X. Cui, Q.Z. Wang, S.J. Bu, Growth characteristics and corrosion resistance of micro-arc oxidation coating on pure magnesium for biomedical applications. Corros. Sci. 52, 2228–2234 (2010)

    Article  CAS  Google Scholar 

  31. G. Song, A. Atrens, D.S.T. John, J. Nairn, Y. Li, The electrochemical corrosion of pure Magnesium in 1 N NaCl. Corros. Sci. 39, 855–875 (1997)

    Article  CAS  Google Scholar 

  32. E. Slavcheva, G. Petkova, P. Andreev, Inhibition of corrosion of AZ91 magnesium alloy in ethylene glycol solution in presence of chloride anions. Mater. Corros. 56, 83–87 (2015)

    Article  Google Scholar 

  33. R. Ambat, N.N. Aung, W. Zhou, Studies on the influence of chloride ion and pH on the corrosion and electrochemical behaviour of AZ91D magnesium alloy. J. Appl. Electrochem. 30, 865–874 (2000)

    Article  CAS  Google Scholar 

  34. M.C. Zhao, M. Liu, G.L. Song, A. Atrens, Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91. Corros. Sci. 50, 1939–1953 (2008)

    Article  CAS  Google Scholar 

  35. G.L. Song, A. Atrens, X.L. Wu, B. Zhang, Corrosion behaviour of AZ21, AZ501 AND AZ91 in sodium chloride. Corros. Sci. 40, 1769–1791 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the project sponsored by the support from National Natural Science Foundation of China (Nos. 51775502, 51275472) and the Natural Science Foundation of Zhejiang Province (No. LY20E050024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Xiong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, T., Gong, X., Xiong, Y. et al. Effect of Initial Orientation on Corrosion Behavior of AZ80 Magnesium Alloy in Simulated Body Fluid. Met. Mater. Int. 27, 2645–2655 (2021). https://doi.org/10.1007/s12540-020-00611-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00611-1

Keywords

Navigation