Skip to main content

Advertisement

Log in

Calcium carbonate as silver carrier in composite materials obtained in green seaweed extract with topical applications

  • Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Two new Ag–AgCl/CaCO3 composite materials, with different molar ratios Ag:CaCO3, were obtained in a green seaweed (Ulva lactuca) extract by a two steps synthesis. The first step consists in a green, partial reduction of Ag(I) in order to obtain Ag–AgCl crystals, which are deposited in the second step on CaCO3. The composites were characterized by XRD, SEM, EDX, UV–vis, and FTIR spectroscopy. The morphology of composite materials consists in aggregates of calcite nanoparticles, decorated with Ag–AgCl, and the aggregates shape depends on the Ag(I):Ca(II) initial molar ratio. The aggregates are also capped with phytochemicals from green seaweeds, mainly polysaccharides. The composites can be used as a model for the utilization of calcium carbonate as silver carrier in medical applications. The dermatological properties of composites were tested in vivo for healing of burns. An accelerated healing was noticed for the composite with higher silver content. The promising results obtained in vivo recommend the Ag–AgCl/CaCO3 composites for topical applications.

Highlights

  • Ag–AgCl/CaCO3 composites obtained in seaweed extract were successfully tested for burns healing.

  • Healing effect and oxidative activity increase with silver content.

  • Capping polysaccharides improve the topical activity of composites.

  • Calcite powder obtained in seaweed extract can be used as a silver carrier in topical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kitamura M, Konno H, Yasui A, Masuoka H (2002) Controlling factors and mechanism of reactive crystallization of calcium carbonate polymorphs from calcium hydroxide suspensions. J Cryst Growth 236:323–332. https://doi.org/10.1016/S0022-0248(01)02082-6

    Article  CAS  Google Scholar 

  2. Wei W, Ma GH, Hu G, Yu D, Mcleish T, Su ZG, Shen ZY (2008) Preparation of hierarchical hollow CaCO3 particles and the application as anticancer drug carrier. J Am Chem Soc 130:15808–15810. https://doi.org/10.1021/ja8039585

    Article  CAS  Google Scholar 

  3. Chen S, Zhao D, Li F, Zhuo RX, Cheng SX (2012) Co-delivery of genes and drugs with nanostructured calcium carbonate for cancer therapy. RSC Adv 2:1820–1826. https://doi.org/10.1039/c1ra00527h

    Article  CAS  Google Scholar 

  4. Tewes F, Gobbo OL, Ehrhardt C, Healy AM (2016) Amorphous calcium carbonate based-microparticles for peptide pulmonary delivery. ACS Appl Mater Interfaces 8:1164–1175. https://doi.org/10.1021/acsami.5b09023

    Article  CAS  Google Scholar 

  5. Ranhotra GS, Gelroth JA, Leinen SD (2000) Utilization of calcium in breads highly fortified with calcium as calcium carbonate or as dairy calcium. Cereal Chem J 77:293–296. https://doi.org/10.1094/CCHEM.2000.77.3.293

    Article  CAS  Google Scholar 

  6. Kontoyannis CG, Vagenas NV (2000) Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy. Analyst 125:251–255. https://doi.org/10.1039/a908609i

    Article  CAS  Google Scholar 

  7. Faatz M, Gröhn F, Wegner G (2004) Amorphous calcium carbonate: synthesis and potential intermediate in biomineralization. Adv Mater 16:996–1000. https://doi.org/10.1002/adma.200306565

    Article  CAS  Google Scholar 

  8. Kanoje B, Patel D, Kuperkar K (2017) Morphology modification in freshly precipitated calcium carbonate particles using surfactant-polymer template. Mater Lett 187:44–48. https://doi.org/10.1016/j.matlet.2016.10.043

    Article  CAS  Google Scholar 

  9. Rodriguez-Navarro C, Kudłacz K, Cizer Ö, Ruiz-Agudo E (2015) Formation of amorphous calcium carbonate and its transformation into mesostructured calcite. CrystEngComm 17:58–72. https://doi.org/10.1039/c4ce01562b

    Article  CAS  Google Scholar 

  10. Malkaj P, Kanakis J, Dalas E (2004) The effect of leucine on the crystal growth of calcium carbonate. J Cryst Growth 266:533–538. https://doi.org/10.1016/j.jcrysgro.2004.02.114

    Article  CAS  Google Scholar 

  11. Manoli F, Kanakis J, Malkaj P, Dalas E (2002) The effect of aminoacids on the crystal growth of calcium carbonate. J Cryst Growth 236:363–370. https://doi.org/10.1016/S0022-0248(01)02164-9

    Article  CAS  Google Scholar 

  12. Manoli F, Dalas E (2002) The effect of sodium alginate on the crystal growth of calcium carbonate. J Mater Sci Mater Med 13:155–158. https://doi.org/10.1023/A:1013825912150

    Article  CAS  Google Scholar 

  13. Yao C, Xie A, Shen Y, Zhu J, Li T (2013) Green synthesis of calcium carbonate with unusual morphologies in the presence of fruit extracts. J Chil Chem Soc 58:2235–2238. https://doi.org/10.4067/S0717-97072013000400072

    Article  CAS  Google Scholar 

  14. Wesley Alexander J (2009) History of the medical use of silver. Surg Infect 10:289–292. https://doi.org/10.1089/sur.2008.9941

    Article  Google Scholar 

  15. Zhou Y, Chen R, He T, Xu K, Du D, Zhao N, Cheng X, Yang J, Shi H, Lin Y (2016) Biomedical potential of ultrafine Ag/AgCl nanoparticles coated on graphene with special reference to antimicrobial performances and burn wound healing. ACS Appl Mater Interfaces 8:15067–15075. https://doi.org/10.1021/acsami.6b03021

    Article  CAS  Google Scholar 

  16. Patil MP, Piad LLA, Bayaraa E, Subedi P, Tarte NH, Kim GD (2019) Doxycycline hyclate mediated silver–silver chloride nanoparticles and their antibacterial activity. J Nanostructure Chem 9:53–60. https://doi.org/10.1007/s40097-019-0297-6

    Article  CAS  Google Scholar 

  17. Xu Y, Zhou T, Huang S, Xie M, Li H, Xu H, Xia J, Li H (2015) Preparation of magnetic Ag/AgCl/CoFe2O4 composites with high photocatalytic and antibacterial ability. RSC Adv 5:41475–41483. https://doi.org/10.1039/c5ra04410c

    Article  CAS  Google Scholar 

  18. Eckhardt S, Brunetto PS, Gagnon J, Priebe M, Giese B, Fromm KM (2013) Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. Chem Rev 113:4708–4754. https://doi.org/10.1021/cr300288v

    Article  CAS  Google Scholar 

  19. Dong C, Zhang X, Cai H, Cao C (2016) Green synthesis of biocompatible silver nanoparticles mediated by Osmanthus fragrans extract in aqueous solution. Optik 127:10378–10388. https://doi.org/10.1016/j.ijleo.2016.08.055

    Article  CAS  Google Scholar 

  20. Ethiraj AS, Jayanthi S, Ramalingam C, Banerjee C (2016) Control of size and antimicrobial activity of green synthesized silver nanoparticles. Mater Lett 185:526–529. https://doi.org/10.1016/j.matlet.2016.07.114

    Article  CAS  Google Scholar 

  21. Dumbrava A, Berger D, Matei C, Prodan G, Aonofriesei F, Radu MD, Moscalu F (2019) New composite nanomaterials with antimicrobial and photocatalytic properties based on silver and zinc oxide. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-019-01166-4

    Article  CAS  Google Scholar 

  22. Jagtap UB, Bapat VA (2013) Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Ind Crops Prod 46:132–137. https://doi.org/10.1016/j.indcrop.2013.01.019

    Article  CAS  Google Scholar 

  23. Abdel-Raouf N, Alharbi RM, Al-Enazi NM, Alkhulaifi MM, Ibraheem IBM (2018) Rapid biosynthesis of silver nanoparticles using the marine red alga Laurencia catarinensis and their characterization. Beni-Suef Univ J Basic Appl Sci 7:150–157. https://doi.org/10.1016/j.bjbas.2017.10.003

    Article  Google Scholar 

  24. David L, Moldovan B, Vulcu A, Olenic L, Perde-Schrepler M, Fischer-Fodor E, Florea A, Crisan M, Chiorean I, Clichici S, Filip GA (2014) Green synthesis, characterization and anti-inflammatory activity of silver nanoparticles using European black elderberry fruits extract. Colloids Surf B Biointerfaces 122:767–777. https://doi.org/10.1016/j.colsurfb.2014.08.018

    Article  CAS  Google Scholar 

  25. Jacinto MJ, Vasconcelos L, Sousa Jr PT, Dall’Oglio EL, Ferreira LF, Silva CF, Oliveira ES (2019) Biosynthesis of Ag nanoparticles and their immobilization on multifunctional ZnO materials—a step closer to environmental feasibility. J Sol–Gel Sci Technol 91:21–32. https://doi.org/10.1007/s10971-019-05014-2

    Article  CAS  Google Scholar 

  26. Matai I, Sachdev A, Dubey P, Kumar SU, Bhushan B, Gopinath P (2014) Antibacterial activity and mechanism of Ag–ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli. Colloids Surf B Biointerfaces 115:359–367. https://doi.org/10.1016/j.colsurfb.2013.12.005

    Article  CAS  Google Scholar 

  27. Tian Y, Qi J, Zhang W, Cai Q, Jiang X (2014) Facile, one-pot synthesis, and antibacterial activity of mesoporous silica nanoparticles decorated with well-dispersed silver nanoparticles. ACS Appl Mater Interfaces 6:12038–12045. https://doi.org/10.1021/am5026424

    Article  CAS  Google Scholar 

  28. Thanh TTT, Quach TMT, Nguyen TN, Luong DV, Bui ML, Tran TTV (2016) Structure and cytotoxic activity of ulvan extracted from green seaweed Ulva lactuca. Int J Biol Macromol 93:695–702. https://doi.org/10.1016/j.ijbiomac.2016.09.040

    Article  CAS  Google Scholar 

  29. Massironi A, Morelli A, Grassi L, Puppi D, Braccini S, Maisetta G, Esin S, Batoni G, Della Pina C, Chiellini F (2019) Ulvan as novel reducing and stabilizing agent from renewable algal biomass: Application to green synthesis of silver nanoparticles. Carbohydr Polym 203:310–321. https://doi.org/10.1016/j.carbpol.2018.09.066

    Article  CAS  Google Scholar 

  30. Dumbrava A, Berger D, Matei C, Radu MD, Gheorghe E (2018) Characterization and applications of a new composite material obtained by green synthesis, through deposition of zinc oxide onto calcium carbonate precipitated in green seaweeds extract. Ceram Int 44:4931–4936. https://doi.org/10.1016/j.ceramint.2017.12.084

    Article  CAS  Google Scholar 

  31. Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431

    Article  CAS  Google Scholar 

  32. Yonny ME, García EM, López A, Arroquy JI, Nazareno MA (2016) Measurement of malondialdehyde as oxidative stress biomarker in goat plasma by HPLC-DAD. Microchem J 129:281–285. https://doi.org/10.1016/j.microc.2016.07.010

    Article  CAS  Google Scholar 

  33. Lowry OH, Rosebrough NJ, Lewis Farr A, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  34. Kezuka Y, Kawai K, Eguchi K, Tajika M (2017) Fabrication of single-crystalline calcite needle-like particles using the aragonite–calcite phase transition. Minerals 7:133. https://doi.org/10.3390/min7080133

    Article  Google Scholar 

  35. Siddiqui MRH, Adil SF, Nour K, Assal ME, Al-Warthan A (2013) Ionic liquid behavior and high thermal stability of silver chloride nanoparticles: Synthesis and characterization. Arab J Chem 6:435–438. https://doi.org/10.1016/j.arabjc.2013.05.005

    Article  CAS  Google Scholar 

  36. Durán N, Durán M, de Souza CE (2017) Silver and silver chloride nanoparticles and their anti-tick activity: a mini review. J Braz Chem Soc 28:927–932. https://doi.org/10.21577/0103-5053.20170045

    Article  CAS  Google Scholar 

  37. Syed B, Nagendra Prasad MN, Dhananjaya BL, Mohan Kumar K, Yallappa S, Satish S (2016) Synthesis of silver nanoparticles by endosymbiont Pseudomonas fluorescens CA 417 and their bactericidal activity. Enzym Micro Technol 95:128–136. https://doi.org/10.1016/j.enzmictec.2016.10.004

    Article  CAS  Google Scholar 

  38. Vanaja M, Annadurai G (2013) Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Appl Nanosci 3:217–223. https://doi.org/10.1007/s13204-012-0121-9

    Article  CAS  Google Scholar 

  39. Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds, Part A: theory and applications in inorganic chemistry, 6th edn. Hoboken, New Jersey: John Wiley & Sons.

  40. Gómez-Ordóñez E, Rupérez P (2011) FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food Hydrocoll 25:1514–1520. https://doi.org/10.1016/j.foodhyd.2011.02.009

    Article  CAS  Google Scholar 

  41. Glaus S, Calzaferri G (2003) The band structures of the silver halides AgF, AgCl, and AgBr: A comparative study. Photochem Photobiol Sci 2:398–401. https://doi.org/10.1039/B211678B

    Article  CAS  Google Scholar 

  42. McEvoy JG, Cui W, Zhang Z (2014) Synthesis and characterization of Ag/AgCl–activated carbon composites for enhanced visible light photocatalysis. Appl Catal B Environ 144:702–712. https://doi.org/10.1016/j.apcatb.2013.07.062

    Article  CAS  Google Scholar 

  43. Politano AD, Campbell KT, Rosenberger LH, Sawyer RG (2013) Use of silver in the prevention and treatment of infections: silver review. Surg Infect 14:8–20. https://doi.org/10.1089/sur.2011.097

    Article  Google Scholar 

  44. Bullock AJ, Pickavance P, Haddow DB, Rimmer S, MacNeil S (2010) Development of a calcium-chelating hydrogel for treatment of superficial burns and scalds. Regen Med 5:55–64. https://doi.org/10.2217/rme.09.67

    Article  CAS  Google Scholar 

  45. Cortese-Krott MM, Münchow M, Pirev E, Heßner F, Bozkurt A, Uciechowski P, Pallua N, Kröncke KD, Suschek CV (2009) Silver ions induce oxidative stress and intracellular zinc release in human skin fibroblasts. Free Radic Biol Med 47:1570–1577. https://doi.org/10.1016/j.freeradbiomed.2009.08.023

    Article  CAS  Google Scholar 

  46. Liu J, Sonshine DA, Shervani S, Hurt RH (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4:6903–6913. https://doi.org/10.1021/nn102272n

    Article  CAS  Google Scholar 

  47. Charehsaz M, Hougaard KS, Sipahi H, Ekici AID, Kaspar Ç, Culha M, Bucurgat ÜÜ, Aydin A (2016) Effects of developmental exposure to silver in ionic and nanoparticle form: a study in rats. DARU J Pharm Sci 24:24. https://doi.org/10.1186/s40199-016-0162-9

    Article  CAS  Google Scholar 

  48. Tuncer M, Seker E (2011) Single step sol-gel made silver chloride on titania xerogels to inhibit E. coli bacteria growth: effect of preparation and chloride ion on bactericidal activity. J Sol–Gel Sci Technol 59:304–310. https://doi.org/10.1007/s10971-011-2500-1

    Article  CAS  Google Scholar 

  49. Busch CJ, Binder CJ (2017) Malondialdehyde epitopes as mediators of sterile inflammation. Biochim Biophys Acta 1862:398–406. https://doi.org/10.1016/j.bbalip.2016.06.016

    Article  CAS  Google Scholar 

  50. Batarseh KI, Smith MA (2012) Synergistic activities of a silver(I) glutamic acid complex and reactive oxygen species (ROS): a novel antimicrobial and chemotherapeutic agent. Curr Med Chem 19:3635–3640. https://doi.org/10.2174/092986712801323216

    Article  CAS  Google Scholar 

Download references

Acknowledgements

AD acknowledges financial support through the Project No. 10 from order no. 397/27.05.2019 of JINR–VBLHEP, Dubna, Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anca Dumbrava.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matei, C., Berger, D., Dumbrava, A. et al. Calcium carbonate as silver carrier in composite materials obtained in green seaweed extract with topical applications. J Sol-Gel Sci Technol 93, 315–323 (2020). https://doi.org/10.1007/s10971-019-05145-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-05145-6

Keywords

Navigation